Wang Meiling, Yao Ying, Tian Yuhui, Yuan Yifei, Wang Liguang, Yang Feiyang, Ren Jingjie, Hu Xinrong, Wu Feng, Zhang Shanqing, Wu Junxiu, Lu Jun
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China.
Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, China.
Adv Mater. 2023 Mar;35(12):e2210658. doi: 10.1002/adma.202210658. Epub 2023 Feb 7.
CO utilization and conversion are of great importance in alleviating the rising CO concentration in the atmosphere. Here, a single-atom catalyst (SAC) is reported for electrochemical CO utilization in both aqueous and aprotic electrolytes. Specifically, atomically dispersed Mn-N sites are embedded in bowl-like mesoporous carbon particles with the functionalization of epoxy groups in the second coordination spheres. Theoretical calculations suggest that the epoxy groups near the Mn-N site adjust the electronic structure of the catalyst with reduced reaction energy barriers for the electrocatalytic reduction of CO to CO. The resultant Mn-single-atom carbon with N and O doped catalyst (MCs-(N,O)) exhibits extraordinary electrocatalytic performance with a high CO faradaic efficiency of 94.5%, a high CO current density of 13.7 mA cm , and a low overpotential of 0.44 V in the aqueous environment. Meanwhile, as a cathode catalyst for aprotic Li-CO batteries, the MCs-(N,O) with well-regulated active sites and unique mesoporous bowl-like morphology optimizes the nucleation behavior of discharge products. MCs-(N,O)-based batteries deliver a low overpotential and excellent cyclic stability of 1000 h. The findings in this work provide a new avenue to design and fabricate SACs for various electrochemical CO utilization systems.
一氧化碳的利用和转化对于缓解大气中不断上升的一氧化碳浓度至关重要。在此,报道了一种用于水性和非质子电解质中电化学一氧化碳利用的单原子催化剂(SAC)。具体而言,原子分散的Mn-N位点嵌入碗状介孔碳颗粒中,在第二配位球中具有环氧基团功能化。理论计算表明,Mn-N位点附近的环氧基团调整了催化剂的电子结构,降低了将一氧化碳电催化还原为一氧化碳的反应能垒。所得的具有N和O掺杂的Mn单原子碳催化剂(MCs-(N,O))表现出非凡的电催化性能,在水性环境中具有94.5%的高一氧化碳法拉第效率、13.7 mA cm的高一氧化碳电流密度和0.44 V的低过电位。同时,作为非质子锂-二氧化碳电池的阴极催化剂,具有良好调控活性位点和独特介孔碗状形态的MCs-(N,O)优化了放电产物的成核行为。基于MCs-(N,O)的电池具有低过电位和1000小时的优异循环稳定性。这项工作中的发现为设计和制造用于各种电化学一氧化碳利用系统的单原子催化剂提供了一条新途径。