From the Departments of Radiology (Chenhan Hu, X.Q., Chunhong Hu, J.B., X.W.) and Pathology (R.H.), the First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou 215006, China.
Radiol Imaging Cancer. 2024 May;6(3):e230143. doi: 10.1148/rycan.230143.
Purpose To develop and validate a machine learning multimodality model based on preoperative MRI, surgical whole-slide imaging (WSI), and clinical variables for predicting prostate cancer (PCa) biochemical recurrence (BCR) following radical prostatectomy (RP). Materials and Methods In this retrospective study (September 2015 to April 2021), 363 male patients with PCa who underwent RP were divided into training ( = 254; median age, 69 years [IQR, 64-74 years]) and testing ( = 109; median age, 70 years [IQR, 65-75 years]) sets at a ratio of 7:3. The primary end point was biochemical recurrence-free survival. The least absolute shrinkage and selection operator Cox algorithm was applied to select independent clinical variables and construct the clinical signature. The radiomics signature and pathomics signature were constructed using preoperative MRI and surgical WSI data, respectively. A multimodality model was constructed by combining the radiomics signature, pathomics signature, and clinical signature. Using Harrell concordance index (C index), the predictive performance of the multimodality model for BCR was assessed and compared with all single-modality models, including the radiomics signature, pathomics signature, and clinical signature. Results Both radiomics and pathomics signatures achieved good performance for BCR prediction (C index: 0.742 and 0.730, respectively) on the testing cohort. The multimodality model exhibited the best predictive performance, with a C index of 0.860 on the testing set, which was significantly higher than all single-modality models (all ≤ .01). Conclusion The multimodality model effectively predicted BCR following RP in patients with PCa and may therefore provide an emerging and accurate tool to assist postoperative individualized treatment. MR Imaging, Urinary, Pelvis, Comparative Studies . © RSNA, 2024.
目的 基于术前磁共振成像(MRI)、手术全切片成像(WSI)和临床变量,开发和验证一种机器学习多模态模型,以预测根治性前列腺切除术后前列腺癌(PCa)的生化复发(BCR)。
材料与方法 本回顾性研究(2015 年 9 月至 2021 年 4 月)纳入 363 例接受 RP 的 PCa 男性患者,分为训练集(n = 254;中位年龄 69 岁 [IQR,6474 岁])和测试集(n = 109;中位年龄 70 岁 [IQR,6575 岁]),比例为 7∶3。主要终点是生化无复发生存。应用最小绝对收缩和选择算子 Cox 算法选择独立的临床变量并构建临床特征。利用术前 MRI 和手术 WSI 数据构建放射组学特征和病理组学特征。通过组合放射组学特征、病理组学特征和临床特征构建多模态模型。采用 Harrell 一致性指数(C 指数)评估多模态模型对 BCR 的预测性能,并与所有单模态模型(包括放射组学特征、病理组学特征和临床特征)进行比较。
结果 在测试队列中,放射组学和病理组学特征在预测 BCR 方面均具有良好的性能(C 指数:0.742 和 0.730)。多模态模型在测试集上的预测性能最佳,C 指数为 0.860,明显优于所有单模态模型(均 P <.01)。
结论 该多模态模型可有效预测 PCa 患者 RP 后的 BCR,可能为术后个体化治疗提供一种新兴的、准确的工具。