Suppr超能文献

基于前列腺癌苏木精和伊红图像计算的筛状区指数与根治性前列腺切除术后生化复发相关,并且在 Gleason 分级组 2 中最具预后价值。

Computationally Derived Cribriform Area Index from Prostate Cancer Hematoxylin and Eosin Images Is Associated with Biochemical Recurrence Following Radical Prostatectomy and Is Most Prognostic in Gleason Grade Group 2.

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.

Public Health Agency of Catalonia, Lleida, Catalonia, Spain.

出版信息

Eur Urol Focus. 2021 Jul;7(4):722-732. doi: 10.1016/j.euf.2021.04.016. Epub 2021 Apr 30.

Abstract

BACKGROUND

The presence of invasive cribriform adenocarcinoma (ICC), an expanse of cells containing punched-out lumina uninterrupted by stroma, in radical prostatectomy (RP) specimens has been associated with biochemical recurrence (BCR). However, ICC identification has only moderate inter-reviewer agreement.

OBJECTIVE

To investigate quantitative machine-based assessment of the extent and prognostic utility of ICC, especially within individual Gleason grade groups.

DESIGN, SETTING, AND PARTICIPANTS: A machine learning approach was developed for ICC segmentation using 70 RP patients and validated in a cohort of 749 patients from four sites whose median year of surgery was 2007 and with median follow-up of 28 mo. ICC was segmented on one representative hematoxylin and eosin RP slide per patient and the fraction of tumor area composed of ICC, the cribriform area index (CAI), was measured.

OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS

The association between CAI and BCR was measured in terms of the concordance index (c index) and hazard ratio (HR).

RESULTS AND LIMITATIONS

CAI was correlated with BCR (c index 0.62) in the validation set of 411 patients with ICC morphology, especially those with Gleason grade group 2 cancer (n = 192; c index 0.66), and was less prognostic when patients without ICC were included (c index 0.54). A doubling of CAI in the group with ICC morphology was prognostic after controlling for Gleason grade, surgical margin positivity, preoperative prostate-specific antigen level, pathological T stage, and age (HR 1.19, 95% confidence interval 1.03-1.38; p = 0.018).

CONCLUSIONS

Automated image analysis and machine learning could provide an objective, quantitative, reproducible, and high-throughput method of quantifying ICC area. The performance of CAI for grade group 2 cancer suggests that for patients with little Gleason 4 pattern, the ICC fraction has a strong prognostic role.

PATIENT SUMMARY

Machine-based measurement of a specific cell pattern (cribriform; sieve-like, with lots of spaces) in images of prostate specimens could improve risk stratification for patients with prostate cancer. In the future, this could help in expanding the criteria for active surveillance.

摘要

背景

在根治性前列腺切除术(RP)标本中,存在广泛的细胞浸润性筛状腺癌(ICC),其特征为细胞呈打孔状排列,其间无基质分隔,与生化复发(BCR)相关。然而,ICC 的识别仅具有中等的复查者间一致性。

目的

研究 ICC 的定量机器评估方法及其在个别 Gleason 分级组中的预后价值,尤其是 ICC 的程度和预后价值。

设计、设置和参与者:使用 70 例 RP 患者开发了一种用于 ICC 分割的机器学习方法,并在来自四个地点的 749 例患者的队列中进行了验证,这些患者的中位手术年份为 2007 年,中位随访时间为 28 个月。每位患者均从一张代表性的前列腺组织石蜡切片上分割 ICC,并测量肿瘤区域中由 ICC 组成的部分(筛状区域指数,CAI)。

测量结果和统计学分析

使用一致性指数(c 指数)和风险比(HR)来衡量 CAI 与 BCR 之间的相关性。

结果和局限性

CAI 与验证队列中 411 例具有 ICC 形态的患者的 BCR 相关(c 指数 0.62),尤其是 Gleason 分级组 2 癌症患者(n = 192;c 指数 0.66),而当包含没有 ICC 的患者时,CAI 的预后作用较小(c 指数 0.54)。在控制 Gleason 分级、手术切缘阳性、术前前列腺特异性抗原水平、病理 T 分期和年龄后,ICC 形态组中 CAI 的翻倍与预后相关(HR 1.19,95%置信区间 1.03-1.38;p = 0.018)。

结论

自动化图像分析和机器学习可以为定量 ICC 区域提供客观、定量、可重复和高通量的方法。CAI 对 2 级癌症的表现表明,对于 Gleason 4 模式较少的患者,ICC 分数具有很强的预后作用。

患者总结

基于图像的前列腺标本中特定细胞模式(筛状,有很多空间)的机器测量可能会改善前列腺癌患者的风险分层。在未来,这可能有助于扩大主动监测的标准。

相似文献

6
Oncological outcomes of cribriform histology pattern in prostate cancer patients: a systematic review and meta-analysis.
Prostate Cancer Prostatic Dis. 2023 Dec;26(4):646-654. doi: 10.1038/s41391-022-00600-y. Epub 2022 Oct 10.
7
Neo-adjuvant and adjuvant hormone therapy for localised and locally advanced prostate cancer.
Cochrane Database Syst Rev. 2006 Oct 18;2006(4):CD006019. doi: 10.1002/14651858.CD006019.pub2.
10
Validation of a 10-gene molecular signature for predicting biochemical recurrence and clinical metastasis in localized prostate cancer.
J Cancer Res Clin Oncol. 2018 May;144(5):883-891. doi: 10.1007/s00432-018-2615-7. Epub 2018 Mar 6.

引用本文的文献

1
Development of a deep learning system for predicting biochemical recurrence in prostate cancer.
BMC Cancer. 2025 Feb 10;25(1):232. doi: 10.1186/s12885-025-13628-9.
3
Undetected Cribriform and Intraductal Prostate Cancer at biopsy is associated with adverse outcomes.
Prostate Cancer Prostatic Dis. 2025 Mar;28(1):187-192. doi: 10.1038/s41391-024-00910-3. Epub 2024 Oct 21.
4
Characterization of arteriosclerosis based on computer-aided measurements of intra-arterial thickness.
J Med Imaging (Bellingham). 2024 Sep;11(5):057501. doi: 10.1117/1.JMI.11.5.057501. Epub 2024 Oct 10.
5
A selective CutMix approach improves generalizability of deep learning-based grading and risk assessment of prostate cancer.
J Pathol Inform. 2024 May 7;15:100381. doi: 10.1016/j.jpi.2024.100381. eCollection 2024 Dec.
8
Harnessing artificial intelligence for prostate cancer management.
Cell Rep Med. 2024 Apr 16;5(4):101506. doi: 10.1016/j.xcrm.2024.101506. Epub 2024 Apr 8.
10
Deep Learning Methodologies Applied to Digital Pathology in Prostate Cancer: A Systematic Review.
Diagnostics (Basel). 2023 Aug 14;13(16):2676. doi: 10.3390/diagnostics13162676.

本文引用的文献

3
The 2019 Genitourinary Pathology Society (GUPS) White Paper on Contemporary Grading of Prostate Cancer.
Arch Pathol Lab Med. 2021 Apr 1;145(4):461-493. doi: 10.5858/arpa.2020-0015-RA.
5
Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study.
Lancet Oncol. 2020 Feb;21(2):222-232. doi: 10.1016/S1470-2045(19)30738-7. Epub 2020 Jan 8.
6
Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study.
Lancet Oncol. 2020 Feb;21(2):233-241. doi: 10.1016/S1470-2045(19)30739-9. Epub 2020 Jan 8.
7
Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology.
Nat Rev Clin Oncol. 2019 Nov;16(11):703-715. doi: 10.1038/s41571-019-0252-y. Epub 2019 Aug 9.
8
Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer.
NPJ Digit Med. 2019 Jun 7;2:48. doi: 10.1038/s41746-019-0112-2. eCollection 2019.
9
Grading of prostate cancer: a work in progress.
Histopathology. 2019 Jan;74(1):146-160. doi: 10.1111/his.13767.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验