Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON N1G2W1, Canada.
Sci Adv. 2024 May 17;10(20):eadm7907. doi: 10.1126/sciadv.adm7907.
Understanding how the amino acid sequence dictates protein structure and defines its stability is a fundamental problem in molecular biology. It is especially challenging for membrane proteins that reside in the complex environment of a lipid bilayer. Here, we obtain an atomic-level picture of the thermally induced unfolding of a membrane-embedded α-helical protein, human aquaporin 1, using solid-state nuclear magnetic resonance spectroscopy. Our data reveal the hierarchical two-step pathway that begins with unfolding of a structured extracellular loop and proceeds to an intermediate state with a native-like helical packing. In the second step, the transmembrane domain unravels as a single unit, resulting in a heterogeneous misfolded state with high helical content but with nonnative helical packing. Our results show the importance of loops for the kinetic stabilization of the whole membrane protein structure and support the three-stage membrane protein folding model.
理解氨基酸序列如何决定蛋白质结构并定义其稳定性,是分子生物学中的一个基本问题。对于存在于脂质双层复杂环境中的膜蛋白来说,这尤其具有挑战性。在这里,我们使用固态核磁共振波谱技术获得了一种嵌入膜中的α-螺旋蛋白质——人水通道蛋白 1 的热诱导解折叠的原子水平图像。我们的数据揭示了一个分层次的两步途径,该途径首先从结构上展开细胞外环,然后进入具有类似天然的螺旋包装的中间状态。在第二步中,跨膜域作为一个整体展开,导致具有高螺旋含量但非天然螺旋包装的异质错误折叠状态。我们的结果表明环对于整个膜蛋白结构的动力学稳定性的重要性,并支持三阶段膜蛋白折叠模型。