Suppr超能文献

双柱超导腔中编码的双轨量子比特的擦除检测

Erasure Detection of a Dual-Rail Qubit Encoded in a Double-Post Superconducting Cavity.

作者信息

Koottandavida Akshay, Tsioutsios Ioannis, Kargioti Aikaterini, Smith Cassady R, Joshi Vidul R, Dai Wei, Teoh James D, Curtis Jacob C, Frunzio Luigi, Schoelkopf Robert J, Devoret Michel H

机构信息

Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA and Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, USA.

出版信息

Phys Rev Lett. 2024 May 3;132(18):180601. doi: 10.1103/PhysRevLett.132.180601.

Abstract

Qubits with predominantly erasure errors present distinctive advantages for quantum error correction (QEC) and fault-tolerant quantum computing. Logical qubits based on dual-rail encoding that exploit erasure detection have been recently proposed in superconducting circuit architectures, with either coupled transmons or cavities. Here, we implement a dual-rail qubit encoded in a compact, double-post superconducting cavity. Using an auxiliary transmon, we perform erasure detection on the dual-rail subspace. We characterize the behavior of the code space by a novel method to perform joint-Wigner tomography. This is based on modifying the cross-Kerr interaction between the cavity modes and the transmon. We measure an erasure rate of 3.981±0.003  (ms)^{-1} and a residual, postselected dephasing error rate up to 0.17  (ms)^{-1} within the code space. This strong hierarchy of error rates, together with the compact and hardware-efficient nature of this novel architecture, holds promise in realizing QEC schemes with enhanced thresholds and improved scaling.

摘要

具有主要擦除错误的量子比特在量子纠错(QEC)和容错量子计算方面具有独特优势。最近在超导电路架构中,基于利用擦除检测的双轨编码提出了逻辑量子比特,其采用耦合传输子或腔。在此,我们实现了一种编码在紧凑双柱超导腔中的双轨量子比特。利用一个辅助传输子,我们在双轨子空间上执行擦除检测。我们通过一种执行联合维格纳断层扫描的新方法来表征编码空间的行为。这基于修改腔模与传输子之间的交叉克尔相互作用。我们测量到擦除率为3.981±0.003 (ms)^{-1},并且在编码空间内后选的剩余退相错误率高达0.17 (ms)^{-1}。这种错误率的强层次结构,连同这种新型架构紧凑且硬件高效的特性,有望实现具有更高阈值和更好扩展性的QEC方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验