Suppr超能文献

利用离散变量编码逻辑量子位实现收支平衡。

Beating the break-even point with a discrete-variable-encoded logical qubit.

机构信息

Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, China.

Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, China.

出版信息

Nature. 2023 Apr;616(7955):56-60. doi: 10.1038/s41586-023-05784-4. Epub 2023 Mar 22.

Abstract

Quantum error correction (QEC) aims to protect logical qubits from noises by using the redundancy of a large Hilbert space, which allows errors to be detected and corrected in real time. In most QEC codes, a logical qubit is encoded in some discrete variables, for example photon numbers, so that the encoded quantum information can be unambiguously extracted after processing. Over the past decade, repetitive QEC has been demonstrated with various discrete-variable-encoded scenarios. However, extending the lifetimes of thus-encoded logical qubits beyond the best available physical qubit still remains elusive, which represents a break-even point for judging the practical usefulness of QEC. Here we demonstrate a QEC procedure in a circuit quantum electrodynamics architecture, where the logical qubit is binomially encoded in photon-number states of a microwave cavity, dispersively coupled to an auxiliary superconducting qubit. By applying a pulse featuring a tailored frequency comb to the auxiliary qubit, we can repetitively extract the error syndrome with high fidelity and perform error correction with feedback control accordingly, thereby exceeding the break-even point by about 16% lifetime enhancement. Our work illustrates the potential of hardware-efficient discrete-variable encodings for fault-tolerant quantum computation.

摘要

量子错误校正 (QEC) 的目的是通过使用大 Hilbert 空间的冗余来保护逻辑量子位免受噪声的影响,这允许实时检测和校正错误。在大多数 QEC 码中,逻辑量子位被编码为一些离散变量,例如光子数,以便在处理后可以明确提取编码的量子信息。在过去的十年中,已经在各种离散变量编码的情况下展示了重复的 QEC。然而,将如此编码的逻辑量子位的寿命延长到现有最佳物理量子位之外仍然难以实现,这是判断 QEC 实际有用性的一个平衡点。在这里,我们在电路量子电动力学架构中展示了一种 QEC 程序,其中逻辑量子位以微波腔中光子数状态的二项式编码,与辅助超导量子位色散耦合。通过向辅助量子位施加具有定制频率梳的脉冲,我们可以以高保真度重复提取错误综合征,并相应地进行反馈控制错误校正,从而将寿命延长约 16%,超过平衡点。我们的工作说明了硬件高效离散变量编码在容错量子计算中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac92/10076216/14ef2d08a0ad/41586_2023_5784_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验