Nature. 2016 Aug 25;536(7617):441-5. doi: 10.1038/nature18949. Epub 2016 Jul 20.
Quantum error correction (QEC) can overcome the errors experienced by qubits and is therefore an essential component of a future quantum computer. To implement QEC, a qubit is redundantly encoded in a higher-dimensional space using quantum states with carefully tailored symmetry properties. Projective measurements of these parity-type observables provide error syndrome information, with which errors can be corrected via simple operations. The 'break-even' point of QEC--at which the lifetime of a qubit exceeds the lifetime of the constituents of the system--has so far remained out of reach. Although previous works have demonstrated elements of QEC, they primarily illustrate the signatures or scaling properties of QEC codes rather than test the capacity of the system to preserve a qubit over time. Here we demonstrate a QEC system that reaches the break-even point by suppressing the natural errors due to energy loss for a qubit logically encoded in superpositions of Schrödinger-cat states of a superconducting resonator. We implement a full QEC protocol by using real-time feedback to encode, monitor naturally occurring errors, decode and correct. As measured by full process tomography, without any post-selection, the corrected qubit lifetime is 320 microseconds, which is longer than the lifetime of any of the parts of the system: 20 times longer than the lifetime of the transmon, about 2.2 times longer than the lifetime of an uncorrected logical encoding and about 1.1 longer than the lifetime of the best physical qubit (the |0〉f and |1〉f Fock states of the resonator). Our results illustrate the benefit of using hardware-efficient qubit encodings rather than traditional QEC schemes. Furthermore, they advance the field of experimental error correction from confirming basic concepts to exploring the metrics that drive system performance and the challenges in realizing a fault-tolerant system.
量子纠错(QEC)可以克服量子位元所经历的错误,因此是未来量子计算机的重要组成部分。为了实现 QEC,使用具有精心设计的对称特性的量子态对量子位元进行冗余编码,将其编码到更高维的空间中。对这些奇偶型可观测量进行投影测量,可以提供错误综合征信息,通过简单的操作可以纠正错误。QEC 的“平衡点”——即量子位元的寿命超过系统组成部分的寿命——迄今仍遥不可及。尽管以前的工作已经证明了 QEC 的一些元素,但它们主要是展示了 QEC 码的特征或标度性质,而不是测试系统随着时间的推移保持量子位元的能力。在这里,我们通过抑制由于超导谐振器中薛定谔猫态叠加的逻辑编码的量子位元的能量损失而导致的自然错误,展示了达到平衡点的 QEC 系统。我们通过使用实时反馈来实现完整的 QEC 协议,该协议对编码、监测自然发生的错误、解码和纠错进行编码、监测自然发生的错误、解码和纠错。通过全过程层析成像进行测量,无需任何后选择,校正后的量子位元寿命为 320 微秒,比系统的任何部分的寿命都长:比传输子的寿命长 20 倍,比未校正的逻辑编码的寿命长约 2.2 倍,比最佳物理量子位元(谐振器的 |0〉f 和 |1〉f Fock 态)的寿命长 1.1 倍。我们的结果说明了使用硬件高效的量子位元编码而不是传统的 QEC 方案的好处。此外,它们将实验纠错领域从确认基本概念推进到探索驱动系统性能的指标以及实现容错系统的挑战。