Bighin Giacomo, Enss Tilman, Defenu Nicolò
Institut für Theoretische Physik, Universität Heidelberg, 69120, Heidelberg, Germany.
Institut für Theoretische Physik, ETH Zürich, Wolfgang-Pauli-Str. 27, 8093, Zürich, Switzerland.
Nat Commun. 2024 May 17;15(1):4207. doi: 10.1038/s41467-024-48537-1.
The concept of universality has shaped our understanding of many-body physics, but is mostly limited to homogenous systems. Here, we present a study of universality on a non-homogeneous graph, the long-range diluted graph (LRDG). Its scaling theory is controlled by a single parameter, the spectral dimension d, which plays the role of the relevant parameter on complex geometries. The graph under consideration allows us to tune the value of the spectral dimension continuously also to noninteger values and to find the universal exponents as continuous functions of the dimension. By means of extensive numerical simulations, we probe the scaling exponents of a simple instance of symmetric models on the LRDG showing quantitative agreement with the theoretical prediction of universal scaling in real dimensions.
普遍性的概念塑造了我们对多体物理学的理解,但大多局限于均匀系统。在此,我们展示了对非均匀图——长程稀释图(LRDG)上普遍性的一项研究。其标度理论由单个参数,即谱维度d控制,d在复杂几何结构中扮演相关参数的角色。所考虑的图使我们能够将谱维度的值连续调节至非整数值,并找到作为维度连续函数的普适指数。通过广泛的数值模拟,我们探究了LRDG上对称模型一个简单实例的标度指数,结果显示与实维度中普适标度的理论预测在数量上相符。