Suppr超能文献

利用深度学习技术从中枢神经系统肿瘤的组织病理学预测基于 DNA 甲基化的肿瘤类型。

Prediction of DNA methylation-based tumor types from histopathology in central nervous system tumors with deep learning.

机构信息

Biological Data Science Institute, College of Science, Australian National University, Canberra, Australian Capital Territory, Australia.

Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.

出版信息

Nat Med. 2024 Jul;30(7):1952-1961. doi: 10.1038/s41591-024-02995-8. Epub 2024 May 17.

Abstract

Precision in the diagnosis of diverse central nervous system (CNS) tumor types is crucial for optimal treatment. DNA methylation profiles, which capture the methylation status of thousands of individual CpG sites, are state-of-the-art data-driven means to enhance diagnostic accuracy but are also time consuming and not widely available. Here, to address these limitations, we developed Deep lEarning from histoPathoLOgy and methYlation (DEPLOY), a deep learning model that classifies CNS tumors to ten major categories from histopathology. DEPLOY integrates three distinct components: the first classifies CNS tumors directly from slide images ('direct model'), the second initially generates predictions for DNA methylation beta values, which are subsequently used for tumor classification ('indirect model'), and the third classifies tumor types directly from routinely available patient demographics. First, we find that DEPLOY accurately predicts beta values from histopathology images. Second, using a ten-class model trained on an internal dataset of 1,796 patients, we predict the tumor categories in three independent external test datasets including 2,156 patients, achieving an overall accuracy of 95% and balanced accuracy of 91% on samples that are predicted with high confidence. These results showcase the potential future use of DEPLOY to assist pathologists in diagnosing CNS tumors within a clinically relevant short time frame.

摘要

精准诊断中枢神经系统(CNS)的多种肿瘤类型对于优化治疗至关重要。DNA 甲基化谱可捕获数千个个体 CpG 位点的甲基化状态,是一种先进的数据驱动方法,可以提高诊断准确性,但也耗时且不广泛可用。为了解决这些限制,我们开发了深度学习从组织病理学和甲基化(DEPLOY),这是一种从组织病理学分类 CNS 肿瘤的十大类别的深度学习模型。DEPLOY 集成了三个不同的组件:第一个组件直接从幻灯片图像分类 CNS 肿瘤(直接模型),第二个组件最初生成 DNA 甲基化β值的预测,随后用于肿瘤分类(间接模型),第三个组件直接从常规的患者人口统计学数据分类肿瘤类型。首先,我们发现 DEPLOY 可以准确地从组织病理学图像预测β值。其次,我们使用一个基于 1796 名患者内部数据集的十类模型,在三个独立的外部测试数据集(包括 2156 名患者)中预测肿瘤类别,在高置信度预测的样本上,总体准确率为 95%,平衡准确率为 91%。这些结果展示了 DEPLOY 在未来有潜力在临床相关的短时间内辅助病理学家诊断 CNS 肿瘤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验