Riaz Gondal Muhammad Umer, Atta Mehdi Hassan, Khenhrani Raja Ram, Kumari Neha, Ali Muhammad Faizan, Kumar Sooraj, Faraz Maria, Malik Jahanzeb
From the Department of Medicine, Reading Hospital, PA.
Department of Medicine, Jinnah Postgraduate Medical Centre, Karachi, Pakistan.
Cardiol Rev. 2024 May 18. doi: 10.1097/CRD.0000000000000715.
Machine learning (ML), a subset of artificial intelligence (AI) centered on machines learning from extensive datasets, stands at the forefront of a technological revolution shaping various facets of society. Cardiovascular medicine has emerged as a key domain for ML applications, with considerable efforts to integrate these innovations into routine clinical practice. Within cardiac electrophysiology, ML applications, especially in the automated interpretation of electrocardiograms, have garnered substantial attention in existing literature. However, less recognized are the diverse applications of ML in cardiac electrophysiology and arrhythmias, spanning basic science research on arrhythmia mechanisms, both experimental and computational, as well as contributions to enhanced techniques for mapping cardiac electrical function and translational research related to arrhythmia management. This comprehensive review delves into various ML applications within the scope of this journal, organized into 3 parts. The first section provides a fundamental understanding of general ML principles and methodologies, serving as a foundational resource for readers interested in exploring ML applications in arrhythmia research. The second part offers an in-depth review of studies in arrhythmia and electrophysiology that leverage ML methodologies, showcasing the broad potential of ML approaches. Each subject is thoroughly outlined, accompanied by a review of notable ML research advancements. Finally, the review delves into the primary challenges and future perspectives surrounding ML-driven cardiac electrophysiology and arrhythmias research.
机器学习(ML)是人工智能(AI)的一个子集,专注于机器从大量数据集中学习,处于塑造社会各个方面的技术革命前沿。心血管医学已成为机器学习应用的关键领域,人们付出了巨大努力将这些创新融入日常临床实践。在心脏电生理学领域,机器学习应用,尤其是在心电图自动解读方面,在现有文献中受到了广泛关注。然而,机器学习在心脏电生理学和心律失常中的多种应用却鲜为人知,这些应用涵盖心律失常机制的基础科学研究,包括实验性和计算性研究,以及对增强心脏电功能映射技术和心律失常管理相关转化研究的贡献。这篇综述深入探讨了本期刊范围内的各种机器学习应用,分为三个部分。第一部分提供了对一般机器学习原理和方法的基本理解,为有兴趣探索机器学习在心律失常研究中应用的读者提供基础资源。第二部分深入回顾了利用机器学习方法的心律失常和电生理学研究,展示了机器学习方法的广泛潜力。每个主题都进行了全面概述,并对显著的机器学习研究进展进行了综述。最后,该综述探讨了机器学习驱动的心脏电生理学和心律失常研究面临的主要挑战和未来前景。