文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

水稻中锑的组织特异性沉积、形态和迁移。

Tissue-specific deposition, speciation and transport of antimony in rice.

机构信息

Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan.

出版信息

Plant Physiol. 2024 Jul 31;195(4):2683-2693. doi: 10.1093/plphys/kiae289.


DOI:10.1093/plphys/kiae289
PMID:38761402
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11288759/
Abstract

Rice (Oryza sativa) as a staple food is a potential intake source of antimony (Sb), a toxic metalloid. However, how rice accumulates this element is still poorly understood. Here, we investigated tissue-specific deposition, speciation, and transport of Sb in rice. We found that Sb(III) is the preferential form of Sb uptake in rice, but most Sb accumulates in the roots, resulting in a very low root-to-shoot translocation (less than 2%). Analysis of Sb deposition with laser ablation-inductively coupled plasma-mass spectrometry showed that most Sb deposits at the root exodermis. Furthermore, we found that Sb is mainly present as Sb(III) in the root cell sap after uptake. Further characterization showed that Sb(III) uptake is mediated by Low silicon rice 1 (Lsi1), a Si permeable transporter. Lsi1 showed transport activity for Sb(III) rather than Sb(V) in yeast (Saccharomyces cerevisiae). Knockout of Lsi1 resulted in a significant decrease in Sb accumulation in both roots and shoots. Sb concentration in the root cell sap of two independent lsi1 mutants decreased to less than 3% of that in wild-type rice, indicating that Lsi1 is a major transporter for Sb(III) uptake. Knockout of Lsi1 also enhanced rice tolerance to Sb toxicity. However, knockout of Si efflux transporter genes, including Lsi2 and Lsi3, did not affect Sb accumulation. Taken together, our results showed that Sb(III) is taken up by Lsi1 localized at the root exodermis and is deposited at this cell layer due to lack of Sb efflux transporters in rice.

摘要

水稻(Oryza sativa)作为主食是摄入锑(Sb)这种有毒类金属元素的潜在来源。然而,水稻是如何积累这种元素的仍不清楚。在这里,我们研究了 Sb 在水稻中的组织特异性积累、形态和运输。我们发现 Sb(III)是水稻吸收 Sb 的主要形式,但大部分 Sb 积累在根部,导致根到茎的转运率非常低(低于 2%)。用激光烧蚀-电感耦合等离子体质谱法分析 Sb 沉积发现,大部分 Sb 沉积在根外表皮。此外,我们发现 Sb 吸收后主要以 Sb(III)的形式存在于根细胞液中。进一步的特征分析表明,Sb(III)的吸收是由低硅水稻 1(Lsi1)介导的,Lsi1 是一种 Si 通透转运蛋白。Lsi1 在酵母(Saccharomyces cerevisiae)中对 Sb(III)而非 Sb(V)具有转运活性。Lsi1 的敲除导致根部和地上部 Sb 积累量显著减少。两个独立的 lsi1 突变体的根细胞液中 Sb 浓度降低到野生型水稻的 3%以下,表明 Lsi1 是 Sb(III)吸收的主要转运蛋白。Lsi1 的敲除也增强了水稻对 Sb 毒性的耐受性。然而,Si 外排转运蛋白基因(包括 Lsi2 和 Lsi3)的敲除并不影响 Sb 积累。总之,我们的结果表明,Sb(III)被定位于根外表皮的 Lsi1 吸收,由于水稻中缺乏 Sb 外排转运蛋白,Sb 被沉积在这个细胞层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/11288759/96dab8fc27a9/kiae289f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/11288759/d8e266ed5acc/kiae289f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/11288759/bb9f7ef6e0ec/kiae289f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/11288759/395ff89be008/kiae289f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/11288759/454d45a2d8ba/kiae289f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/11288759/42e22eb020ab/kiae289f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/11288759/c74f4384979b/kiae289f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/11288759/96dab8fc27a9/kiae289f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/11288759/d8e266ed5acc/kiae289f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/11288759/bb9f7ef6e0ec/kiae289f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/11288759/395ff89be008/kiae289f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/11288759/454d45a2d8ba/kiae289f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/11288759/42e22eb020ab/kiae289f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/11288759/c74f4384979b/kiae289f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/11288759/96dab8fc27a9/kiae289f7.jpg

相似文献

[1]
Tissue-specific deposition, speciation and transport of antimony in rice.

Plant Physiol. 2024-7-31

[2]
The rice aquaporin Lsi1 mediates uptake of methylated arsenic species.

Plant Physiol. 2009-8

[3]
Functions and transport of silicon in plants.

Cell Mol Life Sci. 2008-10

[4]
The role of the rice aquaporin Lsi1 in arsenite efflux from roots.

New Phytol. 2010-2-16

[5]
Physiological and molecular characterization of Si uptake in wild rice species.

Physiol Plant. 2014-7

[6]
Transport of silicon from roots to panicles in plants.

Proc Jpn Acad Ser B Phys Biol Sci. 2011

[7]
Effect of iron plaque on antimony uptake by rice (Oryza sativa L.).

Environ Pollut. 2015-9

[8]
Uptake, translocation and transformation of antimony in rice (Oryza sativa L.) seedlings.

Environ Pollut. 2016-2

[9]
Genotypic difference in silicon uptake and expression of silicon transporter genes in rice.

Plant Physiol. 2007-11

[10]
[Effect of Boron-antimony Interaction on the Uptake and Accumulation of Antimony and Boron by Rice Seedling].

Huan Jing Ke Xue. 2015-4

引用本文的文献

[1]
Role of polar localization of the silicon transporter OsLsi1 in metalloid uptake by rice roots.

Plant Physiol. 2025-4-30

[2]
Symplastic and apoplastic pathways for local distribution of silicon in rice leaves.

New Phytol. 2025-8

本文引用的文献

[1]
Metal Transport Systems in Plants.

Annu Rev Plant Biol. 2024-7

[2]
The alleviating effects and underlying mechanisms of exogenous selenium on both Sb(III) and Sb(V) toxicity in rice seedlings (Oryza sativa L.).

Environ Sci Pollut Res Int. 2023-8

[3]
Metalloid transporters and their regulation in plants.

Plant Physiol. 2021-12-4

[4]
A crucial role for a node-localized transporter, HvSPDT, in loading phosphorus into barley grains.

New Phytol. 2022-5

[5]
A pericycle-localized silicon transporter for efficient xylem loading in rice.

New Phytol. 2022-4

[6]
Structural basis for high selectivity of a rice silicon channel Lsi1.

Nat Commun. 2021-10-29

[7]
Arsenite transport into paddy rice (Oryza sativa) roots.

New Phytol. 2003-1

[8]
Plant Nutrition for Human Nutrition: Hints from Rice Research and Future Perspectives.

Mol Plant. 2020-6-1

[9]
Bioimaging of multiple elements by high-resolution LA-ICP-MS reveals altered distribution of mineral elements in the nodes of rice mutants.

Plant J. 2019-6-26

[10]
Antimony accumulation and iron plaque formation at different growth stages of rice (Oryza sativa L.).

Environ Pollut. 2019-3-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索