Suppr超能文献

多尺度特征融合和类别权重损失在皮肤病变分类中的应用。

Multi-scale feature fusion and class weight loss for skin lesion classification.

机构信息

School of Artificial Intelligence, Henan University, Zhengzhou, 450046, China.

School of Artificial Intelligence, Henan University, Zhengzhou, 450046, China.

出版信息

Comput Biol Med. 2024 Jun;176:108594. doi: 10.1016/j.compbiomed.2024.108594. Epub 2024 May 14.

Abstract

Skin cancer is one of the common types of cancer. It spreads quickly and is not easy to detect in the early stages, posing a major threat to human health. In recent years, deep learning methods have attracted widespread attention for skin cancer detection in dermoscopic images. However, training a practical classifier becomes highly challenging due to inter-class similarity and intra-class variation in skin lesion images. To address these problems, we propose a multi-scale fusion structure that combines shallow and deep features for more accurate classification. Simultaneously, we implement three approaches to the problem of class imbalance: class weighting, label smoothing, and resampling. In addition, the HAM10000_RE dataset strips out hair features to demonstrate the role of hair features in the classification process. We demonstrate that the region of interest is the most critical classification feature for the HAM10000_SE dataset, which segments lesion regions. We evaluated the effectiveness of our model using the HAM10000 and ISIC2019 dataset. The results showed that this method performed well in dermoscopic classification tasks, with ACC and AUC of 94.0% and 99.3%, on the HAM10000 dataset and ACC of 89.8% for the ISIC2019 dataset. The overall performance of our model is excellent in comparison to state-of-the-art models.

摘要

皮肤癌是常见的癌症类型之一。它扩散迅速,在早期阶段不易被发现,对人类健康构成重大威胁。近年来,深度学习方法在皮肤镜图像的皮肤癌检测中引起了广泛关注。然而,由于皮肤病变图像的类内相似性和类内变异性,训练实用的分类器变得极具挑战性。为了解决这些问题,我们提出了一种多尺度融合结构,结合浅层和深层特征进行更准确的分类。同时,我们实施了三种方法来解决类不平衡问题:类加权、标签平滑和重采样。此外,我们还从 HAM10000_RE 数据集中去除了头发特征,以展示头发特征在分类过程中的作用。我们证明了感兴趣区域是 HAM10000_SE 数据集的最关键分类特征,该数据集分割病变区域。我们使用 HAM10000 和 ISIC2019 数据集评估了我们模型的有效性。结果表明,该方法在皮肤镜分类任务中表现良好,在 HAM10000 数据集上的 ACC 和 AUC 分别为 94.0%和 99.3%,在 ISIC2019 数据集上的 ACC 为 89.8%。与最先进的模型相比,我们的模型的整体性能非常出色。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验