人工智能增强遗传与医学影像数据融合用于 2 型糖尿病风险评估。
AI-enhanced integration of genetic and medical imaging data for risk assessment of Type 2 diabetes.
机构信息
Institute of Public Health, National Yang-Ming Chiao-Tung University, Taipei, Taiwan.
Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.
出版信息
Nat Commun. 2024 May 18;15(1):4230. doi: 10.1038/s41467-024-48618-1.
Type 2 diabetes (T2D) presents a formidable global health challenge, highlighted by its escalating prevalence, underscoring the critical need for precision health strategies and early detection initiatives. Leveraging artificial intelligence, particularly eXtreme Gradient Boosting (XGBoost), we devise robust risk assessment models for T2D. Drawing upon comprehensive genetic and medical imaging datasets from 68,911 individuals in the Taiwan Biobank, our models integrate Polygenic Risk Scores (PRS), Multi-image Risk Scores (MRS), and demographic variables, such as age, sex, and T2D family history. Here, we show that our model achieves an Area Under the Receiver Operating Curve (AUC) of 0.94, effectively identifying high-risk T2D subgroups. A streamlined model featuring eight key variables also maintains a high AUC of 0.939. This high accuracy for T2D risk assessment promises to catalyze early detection and preventive strategies. Moreover, we introduce an accessible online risk assessment tool for T2D, facilitating broader applicability and dissemination of our findings.
2 型糖尿病(T2D)是一个严峻的全球健康挑战,其患病率不断上升,突显了精准健康策略和早期检测计划的重要性。我们利用人工智能,特别是极端梯度提升(XGBoost),为 T2D 制定了强大的风险评估模型。该模型综合了来自台湾生物银行的 68911 名个体的全面遗传和医学影像数据集,整合了多基因风险评分(PRS)、多影像风险评分(MRS)以及年龄、性别和 T2D 家族史等人口统计学变量。我们的研究表明,该模型的受试者工作特征曲线下面积(AUC)为 0.94,可有效识别 T2D 的高危亚组。而具有八个关键变量的简化模型也保持了 0.939 的高 AUC。这种用于 T2D 风险评估的高精度有望促进早期检测和预防策略的发展。此外,我们还引入了一个易于访问的 T2D 在线风险评估工具,以扩大我们研究成果的适用性和传播。