Dolla Tarekegn Heliso, Lawal Isiaka Ayobamidele, Kifle Gizachew Wendimu, Jikamo Samuel Chufamo, Matthews Thabo, Maxakato Nobanathi Wendy, Liu Xinying, Mathe Mkhulu, Billing David Gordon, Ndungu Patrick
Institute for Catalysis and Energy Solutions (ICES), University of South Africa (UNISA), Florida, 1709, South Africa.
Department of Chemistry, Wolaita Sodo University, P. O. Box 138, Wolaita Sodo, Ethiopia.
Sci Rep. 2024 May 19;14(1):11420. doi: 10.1038/s41598-024-58822-0.
Extensive investigations have been carried out on spinel mixed transition metal oxide-based materials for high-performance electrochemical energy storage applications. In this study, mesoporous Mn-substituted MnZnCoO (ZMC) ternary oxide microspheres (x = 0, 0.3, 0.5, 0.7, and 1) were fabricated as electrode materials for supercapacitors through a facile coprecipitation method. Electron microscopy analysis revealed the formation of microspheres comprising interconnected aggregates of nanoparticles. Furthermore, the substitution of Mn into ZnCoO significantly improved the surface area of the synthesized samples. The electrochemical test results demonstrate that the ZMC3 oxide microspheres with an optimal Mn substitution exhibited enhanced performance, displaying the largest specific capacitance of 589.9 F g at 1 A g. Additionally, the ZMC3 electrode maintained a capacitance retention of 92.1% after 1000 cycles and exhibited a significant rate capability at a current density of 10 A g. This improved performance can be ascribed to the synergistic effects of multiple metals resulting from Mn substitution, along with an increase in the surface area, which tailors the redox behavior of ZnCoO (ZC) and facilitates charge transfer. These findings indicate that the incorporation of Mn into mixed transition metal oxides holds promise as an effective strategy for designing high-performance electrodes for energy storage applications.
针对基于尖晶石混合过渡金属氧化物的材料在高性能电化学储能应用方面,已经开展了广泛的研究。在本研究中,通过简便的共沉淀法制备了介孔锰取代的MnZnCoO(ZMC)三元氧化物微球(x = 0、0.3、0.5、0.7和1)作为超级电容器的电极材料。电子显微镜分析表明形成了由纳米颗粒相互连接的聚集体组成的微球。此外,将锰引入ZnCoO显著提高了合成样品的表面积。电化学测试结果表明,具有最佳锰取代量的ZMC3氧化物微球表现出增强的性能,在1 A g时显示出最大比电容为589.9 F g。此外,ZMC3电极在1000次循环后保持92.1%的电容保持率,并且在10 A g的电流密度下表现出显著的倍率性能。这种性能的提升可归因于锰取代导致的多种金属的协同效应,以及表面积的增加,这调整了ZnCoO(ZC)的氧化还原行为并促进了电荷转移。这些发现表明,将锰引入混合过渡金属氧化物有望成为设计用于储能应用的高性能电极的有效策略。