Suppr超能文献

TransAnaNet:用于头颈癌患者放射治疗的基于Transformer的解剖结构变化预测网络

TransAnaNet: Transformer-based Anatomy Change Prediction Network for Head and Neck Cancer Patient Radiotherapy.

作者信息

Chen Meixu, Wang Kai, Dohopolski Michael, Morgan Howard, Sher David, Wang Jing

机构信息

Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, 75235, USA.

Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, MD, 21201, USA.

出版信息

ArXiv. 2024 May 23:arXiv:2405.05674v2.

Abstract

BACKGROUND

Adaptive radiotherapy (ART) can compensate for the dosimetric impact of anatomic change during radiotherapy of head neck cancer (HNC) patients. However, implementing ART universally poses challenges in clinical workflow and resource allocation, given the variability in patient response and the constraints of available resources. Therefore, early identification of head and neck cancer (HNC) patients who would experience significant anatomical change during radiotherapy (RT) is of importance to optimize patient clinical benefit and treatment resources.

PURPOSE

The purpose of this study is to assess the feasibility of using a vision-transformer (ViT) based neural network to predict radiotherapy induced anatomic change of HNC patients.

METHODS

We retrospectively included 121 HNC patients treated with definitive RT/CRT. We collected the planning CT (pCT), planned dose, CBCTs acquired at the initial treatment (CBCT01) and fraction 21 (CBCT21), and primary tumor volume (GTVp) and involved nodal volume (GTVn) delineated on both pCT and CBCTs for model construction and evaluation. A UNet-style ViT network was designed to learn the spatial correspondence and contextual information from embedded image patches of CT, dose, CBCT01, GTVp, and GTVn. The deformation vector field between CBCT01 and CBCT21 was estimated by the model as the prediction of anatomic change, and deformed CBCT01 was used as the prediction of CBCT21. We also generated binary masks of GTVp, GTVn and patient body for volumetric change evaluation. We used data from 100 patients for training and validation, and the remaining 21 patients for testing. Image and volumetric similarity metrics including mean square error (MSE), structural similarity index (SSIM), dice coefficient, and average surface distance were used to measure the similarity between the target image and predicted CBCT.

RESULTS

The predicted image from the proposed method yielded the best similarity to the real image (CBCT21) over pCT, CBCT01, and predicted CBCTs from other comparison models. The average MSE and SSIM between the normalized predicted CBCT to CBCT21 are 0.009 and 0.933, while the average dice coefficient between body mask, GTVp mask, and GTVn mask are 0.972, 0.792, and 0.821 respectively.

CONCLUSIONS

The proposed method showed promising performance for predicting radiotherapy induced anatomic change, which has the potential to assist in the decision making of HNC Adaptive RT.

摘要

背景

自适应放疗(ART)可补偿头颈癌(HNC)患者放疗期间解剖结构变化对剂量的影响。然而,鉴于患者反应的变异性和可用资源的限制,普遍实施ART在临床工作流程和资源分配方面带来了挑战。因此,早期识别在放疗(RT)期间会发生显著解剖结构变化的头颈癌(HNC)患者对于优化患者临床获益和治疗资源至关重要。

目的

本研究的目的是评估使用基于视觉Transformer(ViT)的神经网络预测HNC患者放疗引起的解剖结构变化的可行性。

方法

我们回顾性纳入了121例接受根治性RT/CRT治疗的HNC患者。我们收集了计划CT(pCT)、计划剂量、初始治疗时获取的CBCT(CBCT01)和第21分次时获取的CBCT(CBCT21),以及在pCT和CBCT上勾画的原发肿瘤体积(GTVp)和受累淋巴结体积(GTVn),用于模型构建和评估。设计了一个UNet风格的ViT网络,以从CT、剂量、CBCT01、GTVp和GTVn的嵌入图像块中学习空间对应关系和上下文信息。模型将CBCT01和CBCT21之间的变形矢量场估计为解剖结构变化的预测值,并将变形后的CBCT01用作CBCT21的预测值。我们还生成了GTVp、GTVn和患者身体的二进制掩码,用于体积变化评估。我们使用100例患者的数据进行训练和验证,其余21例患者的数据用于测试。使用包括均方误差(MSE)、结构相似性指数(SSIM)、骰子系数和平均表面距离在内的图像和体积相似性指标来测量目标图像与预测的CBCT之间的相似性。

结果

与pCT、CBCT01以及其他比较模型预测的CBCT相比,所提方法预测的图像与真实图像(CBCT21)的相似度最高。归一化后的预测CBCT与CBCT21之间的平均MSE和SSIM分别为0.009和0.933,而身体掩码、GTVp掩码和GTVn掩码之间的平均骰子系数分别为0.972、0.792和0.821。

结论

所提方法在预测放疗引起的解剖结构变化方面表现出良好的性能,有可能辅助HNC自适应放疗的决策制定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd56/11134772/720ac58bfac2/nihpp-2405.05674v2-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验