Suppr超能文献

使用特定患者的扩散模型来生成基于CBCT的合成CT,用于CBCT引导的自适应放疗。

Using a patient-specific diffusion model to generate CBCT-based synthetic CTs for CBCT-guided adaptive radiotherapy.

作者信息

Chen Xiaoqian, Qiu Richard L J, Wang Tonghe, Chang Chih-Wei, Chen Xuxin, Shelton Joseph W, Kesarwala Aparna H, Yang Xiaofeng

机构信息

Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA.

Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.

出版信息

Med Phys. 2025 Jan;52(1):471-480. doi: 10.1002/mp.17463. Epub 2024 Oct 14.

Abstract

BACKGROUND

Cone beam computed tomography (CBCT) can be used to evaluate the inter-fraction anatomical changes during the entire course for image-guided radiotherapy (IGRT). However, CBCT artifacts from various sources restrict the full application of CBCT-guided adaptive radiation therapy (ART).

PURPOSE

Inter-fraction anatomical changes during ART, including variations in tumor size and normal tissue anatomy, can affect radiation therapy (RT) efficacy. Acquiring high-quality CBCT images that accurately capture patient- and fraction-specific (PFS) anatomical changes is crucial for successful IGRT.

METHODS

To enhance CBCT image quality, we proposed PFS lung diffusion models (PFS-LDMs). The proposed PFS models use a pre-trained general lung diffusion model (GLDM) as a baseline, which is trained on historical deformed CBCT (dCBCT)-planning CT (pCT) paired data. For a given patient, a new PFS model is fine-tuned on a CBCT-deformed pCT (dpCT) pair after each fraction to learn the PFS knowledge for generating personalized synthetic CT (sCT) with quality comparable to pCT or dpCT. The learned PFS knowledge is the specific mapping relationships, including personal inter-fraction anatomical changes between personalized CBCT-dpCT pairs. The PFS-LDMs were evaluated on an institutional lung cancer dataset, quantified by mean absolute error (MAE), peak signal-to-noise ratio (PSNR), normalized cross-correlation (NCC), and structural similarity index measure (SSIM) metrics. We also compared our PFS-LDMs with a mainstream GAN-based model, demonstrating that our PFS fine-tuning strategy could be applied to existing generative models.

RESULTS

Our models showed remarkable improvements across all four evaluation metrics. The proposed PFS-LDMs outperformed the GLDM, demonstrating the effectiveness of our proposed fine-tuning strategy. The PFS model fine-tuned with CBCT images from four prior fractions, reduced the MAE from 103.95 to 15.96 Hounsfield units (HU), and increased the mean PSNR, NCC, and SSIM from 25.36 dB to 33.57 dB, 0.77 to 0.98, and 0.75 to 0.97, respectively. Applying our PFS fine-tuning strategy to a Cycle GAN model also showed improvements, with all four fine-tuned PFS Cycle GAN (PFS-CG) models outperforming the general Cycle GAN model. Overall, our proposed PFS fine-tuning strategy improved CBCT image quality compared to both the pre-correction and non-fine-tuned general models, with our proposed PFS-LDMs yielding better performance than the GAN-based model across all metrics.

CONCLUSIONS

Our proposed PFS-LDMs significantly improve CBCT image quality with increased HU accuracy and fewer artifacts, thus better capturing inter-fraction anatomical changes. This lays the groundwork for enabling CBCT-based ART, which could enhance clinical efficiency and achieve personalized high-precision treatment by accounting for inter-fraction anatomical changes.

摘要

背景

锥形束计算机断层扫描(CBCT)可用于评估图像引导放射治疗(IGRT)整个疗程期间分次间的解剖结构变化。然而,来自各种来源的CBCT伪影限制了CBCT引导的自适应放射治疗(ART)的全面应用。

目的

ART期间的分次间解剖结构变化,包括肿瘤大小和正常组织解剖结构的变化,会影响放射治疗(RT)疗效。获取能够准确捕捉患者和分次特异性(PFS)解剖结构变化的高质量CBCT图像对于成功的IGRT至关重要。

方法

为提高CBCT图像质量,我们提出了PFS肺部扩散模型(PFS-LDMs)。所提出的PFS模型使用预训练的通用肺部扩散模型(GLDM)作为基线,该模型在历史变形CBCT(dCBCT)-计划CT(pCT)配对数据上进行训练。对于给定患者,在每次分次后,在CBCT-变形pCT(dpCT)对上对新的PFS模型进行微调,以学习用于生成质量与pCT或dpCT相当的个性化合成CT(sCT)的PFS知识。所学的PFS知识是特定的映射关系,包括个性化CBCT-dpCT对之间的个人分次间解剖结构变化。PFS-LDMs在一个机构肺癌数据集上进行评估,通过平均绝对误差(MAE)、峰值信噪比(PSNR)、归一化互相关(NCC)和结构相似性指数测量(SSIM)指标进行量化。我们还将我们的PFS-LDMs与一个主流的基于生成对抗网络(GAN)的模型进行了比较,表明我们的PFS微调策略可以应用于现有的生成模型。

结果

我们的模型在所有四个评估指标上都有显著改进。所提出的PFS-LDMs优于GLDM,证明了我们提出的微调策略的有效性。用来自四个先前分次的CBCT图像微调的PFS模型,将MAE从103.95亨氏单位(HU)降低到15.96 HU,并将平均PSNR、NCC和SSIM分别从25.36 dB提高到33.57 dB、从0.77提高到0.98、从0.75提高到0.97。将我们的PFS微调策略应用于Cycle GAN模型也显示出改进,所有四个微调的PFS Cycle GAN(PFS-CG)模型都优于通用的Cycle GAN模型。总体而言,与预校正和未微调的通用模型相比,我们提出的PFS微调策略提高了CBCT图像质量,我们提出的PFS-LDMs在所有指标上的性能都优于基于GAN的模型。

结论

我们提出的PFS-LDMs显著提高了CBCT图像质量,提高了HU准确性并减少了伪影,从而更好地捕捉分次间解剖结构变化。这为实现基于CBCT的ART奠定了基础,通过考虑分次间解剖结构变化,可提高临床效率并实现个性化高精度治疗。

相似文献

本文引用的文献

5
Diffusion Models in Vision: A Survey.视觉中的扩散模型:综述
IEEE Trans Pattern Anal Mach Intell. 2023 Sep;45(9):10850-10869. doi: 10.1109/TPAMI.2023.3261988. Epub 2023 Aug 7.
6
Double U-Net CycleGAN for 3D MR to CT image synthesis.用于3D磁共振成像到计算机断层扫描图像合成的双U-Net循环生成对抗网络
Int J Comput Assist Radiol Surg. 2023 Jan;18(1):149-156. doi: 10.1007/s11548-022-02732-x. Epub 2022 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验