Mol Frank N, van der Hoek Luuk, Ma Baoqiang, Nagam Bharath Chowdhary, Sijtsema Nanna M, van Dijk Lisanne V, Bunte Kerstin, Vlijm Rifka, van Ooijen Peter M A
Faculty of Science and Engineering,University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands.
Head Neck Tumor Segm MR Guid Appl (2024). 2025;15273:179-190. doi: 10.1007/978-3-031-83274-1_13. Epub 2025 Mar 3.
The superior soft tissue differentiation provided by MRI may enable more accurate tumor segmentation compared to CT and PET, potentially enhancing adaptive radiotherapy treatment planning. The Head and Neck Tumor Segmentation for MR-Guided Applications challenge (HNTSMRG-24) comprises two tasks: segmentation of primary gross tumor volume (GTVp) and metastatic lymph nodes (GTVn) on T2-weighted MRI volumes obtained at (1) pre-radiotherapy (pre-RT) and (2) mid-radiotherapy (mid-RT). The training dataset consists of data from 150 patients, including MRI volumes of pre-RT, mid-RT, and pre-RT registered to the corresponding mid-RT volumes. Each MRI volume is accompanied by a label mask, generated by merging independent annotations from a minimum of three experts. For both tasks, we propose adopting the nnU-Net V2 framework by the use of a 15-fold cross-validation ensemble instead of the standard number of 5 folds for increased robustness and variability. For pre-RT segmentation, we augmented the initial training data (150 pre-RT volumes and masks) with the corresponding mid-RT data. For mid-RT segmentation, we opted for a three-channel input, which, in addition to the mid-RT MRI volume, comprises the registered pre-RT MRI volume and the corresponding mask. The mean of the aggregated Dice Similarity Coefficient for GTVp and GTVn is computed on a blind test set and determines the quality of the proposed methods. These metrics determine the final ranking of methods for both tasks separately. The final blind testing (50 patients) of the methods proposed by our team, _, resulted in an aggregated Dice Similarity Coefficient of 0.81 (0.77 for GTVp and 0.85 for GTVn) for Task 1 and 0.70 (0.54 for GTVp and 0.86 for GTVn) for Task 2.
与CT和PET相比,MRI提供的软组织分辨能力更强,可能使肿瘤分割更准确,从而有可能改进自适应放射治疗的治疗计划。用于MR引导应用的头颈部肿瘤分割挑战赛(HNTSMRG - 24)包括两项任务:在(1)放疗前(pre - RT)和(2)放疗中期(mid - RT)获取的T2加权MRI图像上分割原发大体肿瘤体积(GTVp)和转移性淋巴结(GTVn)。训练数据集由150名患者的数据组成,包括放疗前、放疗中期的MRI图像以及与相应放疗中期图像配准的放疗前图像。每个MRI图像都伴有一个标签掩码,该掩码由至少三名专家的独立标注合并生成。对于这两项任务,我们建议采用nnU - Net V2框架,并使用15折交叉验证集成,而不是标准的5折,以提高鲁棒性和可变性。对于放疗前分割,我们用相应的放疗中期数据扩充了初始训练数据(150个放疗前图像和掩码)。对于放疗中期分割,我们选择三通道输入,除了放疗中期MRI图像外,还包括配准后的放疗前MRI图像及其相应掩码。在一个盲测集上计算GTVp和GTVn的聚合骰子相似系数的平均值,以确定所提方法的质量。这些指标分别确定两项任务中各方法的最终排名。我们团队提出的方法在最终盲测(50名患者)中,任务1的聚合骰子相似系数为0.81(GTVp为0.77,GTVn为0.85),任务2的聚合骰子相似系数为0.70(GTVp为0.54,GTVn为0.86)。