Upadhyaya Dipak P, Shaikh Aasef G, Cakir Gokce Busra, Prantzalos Katrina, Golnari Pedram, Ghasia Fatema F, Sahoo Satya S
Department of Population & Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
National VA Parkinson's Consortium Center, Louis Stokes Cleveland VA Medical Center Cleveland, OH, USA.
medRxiv. 2024 May 10:2024.05.03.24306688. doi: 10.1101/2024.05.03.24306688.
Amblyopia is a neurodevelopmental visual disorder that affects approximately 3-5% of children globally and it can lead to vision loss if it is not diagnosed and treated early. Traditional diagnostic methods, which rely on subjective assessments and expert interpretation of eye movement recordings presents challenges in resource-limited eye care centers. This study introduces a new approach that integrates the Gemini large language model (LLM) with eye-tracking data to develop a classification tool for diagnosis of patients with amblyopia. The study demonstrates: (1) LLMs can be successfully applied to the analysis of fixation eye movement data to diagnose patients with amblyopia; and (2) Input of medical subject matter expertise, introduced in this study in the form of medical expert augmented generation (MEAG), is an effective adaption of the generic retrieval augmented generation (RAG) approach for medical applications using LLMs. This study introduces a new multi-view prompting framework for ophthalmology applications that incorporates fine granularity feedback from pediatric ophthalmologist together with in-context learning to report an accuracy of 80% in diagnosing patients with amblyopia. In addition to the binary classification task, the classification tool is generalizable to specific subpopulations of amblyopic patients based on severity of amblyopia, type of amblyopia, and with or without nystagmus. The model reports an accuracy of: (1) 83% in classifying patients with moderate or severe amblyopia, (2) 81% in classifying patients with mild or treated amblyopia; and (3) 85% accuracy in classifying patients with nystagmus. To the best of our knowledge, this is the first study that defines a multi-view prompting framework with MEAG to analyze eye tracking data for the diagnosis of amblyopic patients.
弱视是一种神经发育性视觉障碍,全球约3%-5%的儿童受其影响,若不及早诊断和治疗,可能导致视力丧失。传统诊断方法依赖主观评估和对眼动记录的专家解读,这在资源有限的眼科护理中心面临挑战。本研究引入了一种新方法,将Gemini大语言模型(LLM)与眼动追踪数据相结合,以开发一种用于诊断弱视患者的分类工具。该研究表明:(1)大语言模型可成功应用于注视眼动数据分析以诊断弱视患者;(2)本研究以医学专家增强生成(MEAG)的形式引入医学主题专业知识输入,是对使用大语言模型的医学应用的通用检索增强生成(RAG)方法的有效改编。本研究为眼科应用引入了一种新的多视图提示框架,该框架结合了儿科眼科医生的精细粒度反馈以及上下文学习,在诊断弱视患者时报告的准确率为80%。除了二分类任务外,该分类工具还可根据弱视严重程度、弱视类型以及有无眼球震颤推广到弱视患者的特定亚组。该模型报告的准确率为:(1)对中度或重度弱视患者进行分类时为83%,(2)对轻度或已治疗弱视患者进行分类时为81%;(3)对有眼球震颤患者进行分类时准确率为85%。据我们所知,这是第一项定义带有医学专家增强生成的多视图提示框架以分析眼动追踪数据用于诊断弱视患者的研究。