Suppr超能文献

构建和验证预测 HGSOC 患者术后静脉血栓栓塞风险的列线图。

Construction and Validation of a Nomogram to Predict the Postoperative Venous Thromboembolism Risk in Patients with HGSOC.

机构信息

Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

出版信息

Clin Appl Thromb Hemost. 2024 Jan-Dec;30:10760296241255958. doi: 10.1177/10760296241255958.

Abstract

Venous thromboembolism (VTE) is a common complication in patients with high-grade serous ovarian cancer (HGSOC) after surgery. This study aims to establish a comprehensive risk assessment model to better identify the potential risk of postoperative VTE in HGSOC. Clinical data from 587 HGSOC patients who underwent surgical treatment were retrospectively collected. Univariate and multivariate logistic regression analyses were performed to identify independent factors influencing the occurrence of postoperative VTE in HGSOC. A nomogram model was constructed in the training set and further validated in the verification set. Logistic regression identified age (odds ratio [OR] = 1.063,  = .002), tumor size (OR = 3.815,  < .001), postoperative transfusion (OR = 5.646,  = .001), and postoperative D-dimer (OR = 1.246,  = .003) as independent risk factors for postoperative VTE in HGSOC patients. A nomogram was constructed using these factors. The receiver operating characteristic curve showed an area under the curve (AUC) of 0.840 (95% confidence interval [CI]: 0.782, 0.898) in the training set and 0.793 (95% CI: 0.704, 0.882) in the validation set. The calibration curve demonstrated a good consistency between model predictions and actual results. The decision curve analysis indicated the model benefits at a threshold probability of less than 70%. A nomogram predicting postoperative VTE in HGSOC was established and validated. This model will assist clinicians in the early identification of high-risk patients, enabling the implementation of appropriate preventive measures.

摘要

静脉血栓栓塞症(VTE)是接受手术治疗的高级别浆液性卵巢癌(HGSOC)患者的常见并发症。本研究旨在建立一种全面的风险评估模型,以更好地识别 HGSOC 术后 VTE 的潜在风险。回顾性收集了 587 例接受手术治疗的 HGSOC 患者的临床资料。采用单因素和多因素逻辑回归分析确定影响 HGSOC 术后发生 VTE 的独立因素。在训练集中构建列线图模型,并在验证集中进一步验证。逻辑回归确定年龄(比值比 [OR] = 1.063, = .002)、肿瘤大小(OR = 3.815,  < .001)、术后输血(OR = 5.646,  = .001)和术后 D-二聚体(OR = 1.246,  = .003)是 HGSOC 患者术后 VTE 的独立危险因素。使用这些因素构建了列线图。受试者工作特征曲线显示在训练集中的曲线下面积(AUC)为 0.840(95%置信区间 [CI]:0.782,0.898),在验证集中为 0.793(95% CI:0.704,0.882)。校准曲线表明模型预测与实际结果之间具有良好的一致性。决策曲线分析表明,在阈值概率小于 70%时,该模型具有获益。建立并验证了预测 HGSOC 术后 VTE 的列线图模型。该模型将有助于临床医生早期识别高危患者,从而实施适当的预防措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a55/11107311/5352099a304f/10.1177_10760296241255958-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验