Suppr超能文献

用于预测中国结肠癌患者静脉血栓栓塞风险的列线图。

A nomogram to predict the risk of venous thromboembolism in patients with colon cancer in China.

作者信息

Yang Yuanyuan, Zhan Jiayi, Li Xiaosheng, Hua Jun, Lei Haike, Chen Xiaoliang

机构信息

Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, China.

Department of Traditional Chinese Medicine, Chongqing University Cancer Hospital, Chongqing, China.

出版信息

Cancer Med. 2024 May;13(9):e7231. doi: 10.1002/cam4.7231.

Abstract

OBJECTIVE

To create a nomogram for predicting the likelihood of venous thromboembolism (VTE) in colon cancer patients from China.

METHODS

The data of colon cancer patients from Chongqing University Cancer Hospital between 2019 and 2022 were analyzed. Patients were divided into training set and internal validation set by random split-sample method in a split ratio of 7:3. The univariable and multivariable logistic analysis gradually identified the independent risk factors for VTE. A nomogram was created using all the variables that had a significance level of p < 0.05 in the multivariable logistic analysis and those with clinical significance. Calibration curves and clinical decision curve analysis (DCA) were used to assess model's fitting performance and clinical value. Harrell's C-index (concordance statistic) and the area under the receiver operating characteristic curves (AUC) were used to evaluate the predictive effectiveness of models.

RESULTS

A total of 1996 patients were ultimately included. There were 1398 patients in the training set and 598 patients in the internal validation set. The nomogram included age, chemotherapy, targeted therapy, hypertension, activated partial thromboplastin time, prothrombin time, platelet, absolute lymphocyte count, and D-dimer. The C-index of nomogram and Khorana score were 0.754 (95% CI 0.711-0.798), 0.520 (95% CI 0.477-0.563) in the training cohort and 0.713 (95% CI 0.643-0.784), 0.542 (95% CI 0.473-0.612) in the internal validation cohort.

CONCLUSIONS

We have established and validated a nomogram to predict the VTE risk of colon cancer patients in China, which encompasses a diverse age range, a significant population size, and various clinical factors. It facilitates the identification of high-risk groups and may enable the implementation of targeted preventive measures.

摘要

目的

创建一种列线图,用于预测中国结肠癌患者发生静脉血栓栓塞(VTE)的可能性。

方法

分析了重庆大学附属肿瘤医院2019年至2022年结肠癌患者的数据。采用随机分割样本法将患者按7:3的比例分为训练集和内部验证集。单变量和多变量逻辑分析逐步确定VTE的独立危险因素。使用多变量逻辑分析中具有p<0.05显著性水平的所有变量以及具有临床意义的变量创建列线图。校准曲线和临床决策曲线分析(DCA)用于评估模型的拟合性能和临床价值。Harrell氏C指数(一致性统计量)和受试者操作特征曲线下面积(AUC)用于评估模型的预测有效性。

结果

最终纳入1996例患者。训练集有1398例患者,内部验证集有598例患者。列线图包括年龄、化疗、靶向治疗、高血压、活化部分凝血活酶时间、凝血酶原时间、血小板、绝对淋巴细胞计数和D-二聚体。训练队列中列线图和Khorana评分的C指数分别为0.754(95%CI 0.711-0.798)、0.520(95%CI 0.477-0.563),内部验证队列中分别为0.713(95%CI 0.643-0.784)、0.542(95%CI 0.473-0.612)。

结论

我们建立并验证了一种用于预测中国结肠癌患者VTE风险的列线图,该列线图涵盖了不同年龄范围、较大的人群规模和多种临床因素。它有助于识别高危人群,并可能促使实施针对性的预防措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/313e/11066491/3f444faf5bb5/CAM4-13-e7231-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验