Torres-Hernández Fernando, Pinillos Paul, Li Wenqin, Saragi Rizalina Tama, Camiruaga Ander, Juanes Marcos, Usabiaga Imanol, Lesarri Alberto, Fernández José A
Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, Leioa 48940, Spain.
Departamento de Química Física y Química Inorgánica, Facultad de Ciencias - I.U. CINQUIMA, Universidad de Valladolid, Paseo de Belén, 7, E-47011 Valladolid, Spain.
J Phys Chem Lett. 2024 May 30;15(21):5674-5680. doi: 10.1021/acs.jpclett.4c00903. Epub 2024 May 20.
Noncovalent interactions involving sulfur centers play a relevant role in biological and chemical environments. Yet, detailed molecular descriptions are scarce and limited to very simple model systems. Here we explore the formation of the elusive S-H···S hydrogen bond and the competition between S-H···O and O-H···S interactions in pure and mixed dimers of the conformationally flexible molecules 2-phenylethanethiol (PET) and 2-phenylethanol (PEAL), using the isolated and size-controlled environment of a jet expansion. The structure of both PET-PET and PET-PEAL dimers was unraveled through a comprehensive methodology that combined rotationally resolved microwave spectroscopy, mass-resolved isomer-specific infrared laser spectroscopy, and quantum chemical calculations. This synergic experimental-computational approach offered unique insights into the potential energy surface, conformational equilibria, molecular structure, and intermolecular interactions of the dimers. The results show a preferential order for establishing hydrogen bonds following the sequence S-H···S < S-H···O ≲ O-H···S < O-H···O, despite the hydrogen bond only accounting for a fraction of the total interaction energy.
涉及硫中心的非共价相互作用在生物和化学环境中发挥着重要作用。然而,详细的分子描述却很稀少,并且仅限于非常简单的模型系统。在此,我们利用喷射膨胀所提供的孤立且尺寸可控的环境,探索了构象灵活的分子2-苯乙硫醇(PET)和2-苯乙醇(PEAL)的纯二聚体及混合二聚体中难以捉摸的S-H···S氢键的形成,以及S-H···O和O-H···S相互作用之间的竞争。通过结合旋转分辨微波光谱、质量分辨异构体特异性红外激光光谱和量子化学计算的综合方法,解析了PET-PET和PET-PEAL二聚体的结构。这种协同的实验-计算方法为二聚体的势能面、构象平衡、分子结构和分子间相互作用提供了独特的见解。结果表明,尽管氢键仅占总相互作用能的一部分,但形成氢键的优先顺序为S-H···S < S-H···O ≲ O-H···S < O-H···O。