Chemical Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States.
Langmuir. 2024 Jun 4;40(22):11401-11410. doi: 10.1021/acs.langmuir.4c00176. Epub 2024 May 20.
To functionalize interfaces with supported biomembranes and membrane proteins, the challenge is to build stabilized and supported systems that mimic the native lipid microenvironment. Our objective is to control substrate-to-biomembrane spacing and the tethering chemistry so proteoliposomes can be fused and conjugated without perturbation of membrane protein function. Furthermore, the substrates need to exhibit low protein and antibody nonspecific binding to use these systems in assays. We have employed protein orthogonal coupling schemes in concert with multiarm poly(ethylene glycol) (PEG) technology to build supported biomembranes on microspheres. The lipid bilayer structures and tailored substrates of the microsphere-supported biomembranes were analyzed via flow cytometry, confocal fluorescence, and super-resolution imaging microscopy, and the lateral fluidity was quantified using fluorescence recovery after photobleaching (FRAP) techniques. Under these conditions, the 4-arm-PEG-NH based configuration gave the most desirable tethering system based on lateral diffusivity and coverage.
为了使界面功能化,与支持的生物膜和膜蛋白结合,挑战在于构建稳定和支持的系统,模拟天然脂质微环境。我们的目标是控制底物与生物膜的间距和键合化学,以便在不干扰膜蛋白功能的情况下融合和连接类脂体。此外,这些系统在测定中需要表现出低蛋白和抗体非特异性结合,以使用这些系统。我们已经采用蛋白质正交偶联方案与多臂聚乙二醇(PEG)技术相结合,在微球上构建支持的生物膜。通过流式细胞术、共聚焦荧光和超分辨率成像显微镜分析了微球支持的生物膜的脂质双层结构和定制化的底物,并使用荧光恢复后光漂白(FRAP)技术量化了侧向流动性。在这些条件下,基于侧向扩散率和覆盖率,4 臂-PEG-NH 基构型给出了最理想的键合系统。