Suppr超能文献

基于结局类别可视化和量化新预测指标的作用:U-smile 方法。

Visualising and quantifying the usefulness of new predictors stratified by outcome class: The U-smile method.

机构信息

Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznan, Poland.

Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States of America.

出版信息

PLoS One. 2024 May 20;19(5):e0303276. doi: 10.1371/journal.pone.0303276. eCollection 2024.

Abstract

Binary classification methods encompass various algorithms to categorize data points into two distinct classes. Binary prediction, in contrast, estimates the likelihood of a binary event occurring. We introduce a novel graphical and quantitative approach, the U-smile method, for assessing prediction improvement stratified by binary outcome class. The U-smile method utilizes a smile-like plot and novel coefficients to measure the relative and absolute change in prediction compared with the reference method. The likelihood-ratio test was used to assess the significance of the change in prediction. Logistic regression models using the Heart Disease dataset and generated random variables were employed to validate the U-smile method. The receiver operating characteristic (ROC) curve was used to compare the results of the U-smile method. The likelihood-ratio test demonstrated that the proposed coefficients consistently generated smile-shaped U-smile plots for the most informative predictors. The U-smile plot proved more effective than the ROC curve in comparing the effects of adding new predictors to the reference method. It effectively highlighted differences in model performance for both non-events and events. Visual analysis of the U-smile plots provided an immediate impression of the usefulness of different predictors at a glance. The U-smile method can guide the selection of the most valuable predictors. It can also be helpful in applications beyond prediction.

摘要

二进制分类方法包含各种算法,用于将数据点分为两个不同的类别。相比之下,二进制预测估计二元事件发生的可能性。我们引入了一种新颖的图形和定量方法,即 U 形微笑方法,用于评估按二元结果类别分层的预测改进。U 形微笑方法利用微笑状图形和新的系数来衡量与参考方法相比预测的相对和绝对变化。似然比检验用于评估预测变化的显著性。使用心脏病数据集和生成的随机变量的逻辑回归模型验证了 U 形微笑方法。接收者操作特征 (ROC) 曲线用于比较 U 形微笑方法的结果。似然比检验表明,所提出的系数一致地为最具信息量的预测因子生成微笑状 U 形微笑图。U 形微笑图在比较将新预测因子添加到参考方法的效果方面比 ROC 曲线更有效。它有效地突出了非事件和事件的模型性能差异。U 形微笑图的可视化分析提供了对不同预测因子的有用性的直观印象。U 形微笑方法可以指导选择最有价值的预测因子。它在预测之外的应用中也可能会有所帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b3b/11104627/de200bf26a6e/pone.0303276.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验