Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China; lnstitute of Systems, Molecular and Integrative Biology, University of Liverpool, L69 7ZB Liverpool, United Kingdom.
Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China; Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China; Al University Research Centre, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China; lnstitute of Systems, Molecular and Integrative Biology, University of Liverpool, L69 7ZB Liverpool, United Kingdom.
Methods. 2024 Aug;228:30-37. doi: 10.1016/j.ymeth.2024.05.009. Epub 2024 May 18.
With the recent advanced direct RNA sequencing technique that proposed by the Oxford Nanopore Technologies, RNA modifications can be detected and profiled in a simple and straightforward manner. Majority nanopore-based modification studies were devoted to those popular types such as m6A and pseudouridine. To address current limitations on studying the crucial regulator, m1A modification, we conceived this study. We have developed an integrated computational workflow designed for the detection of m1A modifications from direct RNA sequencing data. This workflow comprises a feature extractor responsible for capturing signal characteristics (such as mean, standard deviations, and length of electric signals), a single molecule-level m1A predictor trained with features extracted from the IVT dataset using classical machine learning algorithms, a confident m1A site selector employing the binomial test to identify statistically significant m1A sites, and an m1A modification rate estimator. Our model achieved accurate molecule-level prediction (Average AUC = 0.9689) and reliable m1A site detection and quantification. To show the feasibility of our workflow, we conducted a study on in vivo transcribed human HEK293 cell line, and the results were carefully annotated and compared with other techniques (i.e., Illumina sequencing-based techniques). We believed that this tool will enabling a comprehensive understanding of the m1A modification and its functional mechanisms within cells and organisms.
利用牛津纳米孔技术(Oxford Nanopore Technologies)最近提出的先进直接 RNA 测序技术,可以以简单直接的方式检测和分析 RNA 修饰。大多数基于纳米孔的修饰研究都致力于研究那些流行的类型,如 m6A 和假尿嘧啶。为了解决目前在研究关键调控因子 m1A 修饰方面的局限性,我们构思了这项研究。我们开发了一种集成的计算工作流程,旨在从直接 RNA 测序数据中检测 m1A 修饰。该工作流程包括一个特征提取器,负责捕获信号特征(如平均、标准偏差和电信号长度),一个使用经典机器学习算法从体外转录数据集提取的特征训练的单分子水平 m1A 预测器,一个使用二项式检验识别具有统计学意义的 m1A 位点的置信 m1A 位点选择器,以及一个 m1A 修饰率估计器。我们的模型实现了准确的分子水平预测(平均 AUC=0.9689)和可靠的 m1A 位点检测和定量。为了展示我们的工作流程的可行性,我们对体内转录的人类 HEK293 细胞系进行了研究,并对结果进行了仔细注释,并与其他技术(即基于 Illumina 测序的技术)进行了比较。我们相信,该工具将使人们能够全面了解 m1A 修饰及其在细胞和生物体中的功能机制。