Department of Pharmacy Practice and Science, University of Arizona, Tucson, AZ, USA.
Columbia Center for Human Development, Department of Medicine, Columbia University Medical Center, New York, NY, USA.
Nat Commun. 2024 Aug 21;15(1):7148. doi: 10.1038/s41467-024-51639-5.
We leverage machine learning approaches to adapt nanopore sequencing basecallers for nucleotide modification detection. We first apply the incremental learning (IL) technique to improve the basecalling of modification-rich sequences, which are usually of high biological interest. With sequence backbones resolved, we further run anomaly detection (AD) on individual nucleotides to determine their modification status. By this means, our pipeline promises the single-molecule, single-nucleotide, and sequence context-free detection of modifications. We benchmark the pipeline using control oligos, further apply it in the basecalling of densely-modified yeast tRNAs and E.coli genomic DNAs, the cross-species detection of N6-methyladenosine (m6A) in mammalian mRNAs, and the simultaneous detection of N1-methyladenosine (m1A) and m6A in human mRNAs. Our IL-AD workflow is available at: https://github.com/wangziyuan66/IL-AD .
我们利用机器学习方法来调整纳米孔测序碱基调用器,以检测核苷酸修饰。我们首先应用增量学习(IL)技术来改善富含修饰的序列的碱基调用,这些序列通常具有很高的生物学意义。在解决了序列骨干之后,我们进一步在单个核苷酸上运行异常检测(AD),以确定它们的修饰状态。通过这种方式,我们的流水线承诺能够实现单分子、单核苷酸和序列上下文无关的修饰检测。我们使用对照寡核苷酸对该流水线进行了基准测试,进一步将其应用于密集修饰的酵母 tRNA 和大肠杆菌基因组 DNA 的碱基调用、哺乳动物 mRNA 中 N6-甲基腺嘌呤(m6A)的跨物种检测,以及人类 mRNA 中 N1-甲基腺嘌呤(m1A)和 m6A 的同时检测。我们的 IL-AD 工作流程可在以下网址获得:https://github.com/wangziyuan66/IL-AD。