School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, 450001, China.
Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
Sci Rep. 2024 May 20;14(1):11494. doi: 10.1038/s41598-024-62353-z.
Gastrointestinal stromal tumors (GISTs) predominantly develop in the stomach. While nomogram offer tremendous therapeutic promise, there is yet no ideal nomogram comparison customized specifically for handling categorical data and model selection related gastric GISTs. (1) We selected 5463 patients with gastric GISTs from the SEER Research Plus database spanning from 2000 to 2020; (2) We proposed an advanced missing data imputation algorithm specifically designed for categorical variables; (3) We constructed five Cox nomogram models, each employing distinct methods for the selection and modeling of categorical variables, including Cox (Two-Stage), Lasso-Cox, Ridge-Cox, Elastic Net-Cox, and Cox With Lasso; (4) We conducted a comprehensive comparison of both overall survival (OS) and cancer-specific survival (CSS) tasks at six different time points; (5) To ensure robustness, we performed 50 randomized splits for each task, maintaining a 7:3 ratio between the training and test cohorts with no discernible statistical differences. Among the five models, the Cox (Two-Stage) nomogram contains the fewest features. Notably, at Near-term, Mid-term, and Long-term intervals, the Cox (Two-Stage) model attains the highest Area Under the Curve (AUC), top-1 ratio, and top-3 ratio in both OS and CSS tasks. For the prediction of survival in patients with gastric GISTs, the Cox (Two-Stage) nomogram stands as a simple, stable, and accurate predictive model with substantial promise for clinical application. To enhance the clinical utility and accessibility of our findings, we have deployed the nomogram model online, allowing healthcare professionals and researchers worldwide to access and utilize this predictive tool.
胃肠道间质瘤(GISTs)主要发生在胃中。虽然列线图提供了巨大的治疗前景,但目前还没有专门针对处理分类数据和模型选择相关胃 GISTs 的理想列线图比较。(1)我们从 2000 年到 2020 年的 SEER Research Plus 数据库中选择了 5463 例胃 GISTs 患者;(2)我们提出了一种专门针对分类变量的高级缺失数据插补算法;(3)我们构建了五个 Cox 列线图模型,每个模型都采用不同的方法来选择和建模分类变量,包括 Cox(两阶段)、Lasso-Cox、Ridge-Cox、Elastic Net-Cox 和 Cox With Lasso;(4)我们在六个不同时间点对总生存期(OS)和癌症特异性生存期(CSS)任务进行了全面比较;(5)为了确保稳健性,我们对每个任务进行了 50 次随机分割,训练组和测试组的比例为 7:3,两组之间没有明显的统计学差异。在这五个模型中,Cox(两阶段)列线图包含的特征最少。值得注意的是,在近期、中期和长期间隔内,Cox(两阶段)模型在 OS 和 CSS 任务中均获得了最高的曲线下面积(AUC)、前 1 比例和前 3 比例。对于胃 GISTs 患者的生存预测,Cox(两阶段)列线图是一种简单、稳定且准确的预测模型,具有很大的临床应用潜力。为了提高我们研究结果的临床实用性和可及性,我们已经在线部署了列线图模型,使全球的医疗保健专业人员和研究人员都可以访问和使用这个预测工具。