Suppr超能文献

基于 CT 影像组学特征预测胃肠道间质瘤的有丝分裂指数和术前风险分层。

Prediction of the mitotic index and preoperative risk stratification of gastrointestinal stromal tumors with CT radiomic features.

机构信息

Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China.

Fujian Provincial Minimally Invasive Medical Center, Fuzhou, China.

出版信息

Radiol Med. 2023 Jun;128(6):644-654. doi: 10.1007/s11547-023-01637-2. Epub 2023 May 6.

Abstract

OBJECTIVE

The objective is to develop a mitotic prediction model and preoperative risk stratification nomogram for gastrointestinal stromal tumor (GIST) based on computed tomography (CT) radiomic features.

METHODS

A total of 267 GIST patients from 2009.07 to 2015.09 were retrospectively collected and randomly divided into (6:4) training cohort and validation cohort. The 2D-tumor region of interest was delineated from the portal-phase images on contrast-enhanced (CE)-CT, and radiomic features were extracted. Lasso regression method was used to select valuable features to establish a radiomic model for predicting mitotic index in GIST. Finally, the nomogram of preoperative risk stratification was constructed by combining the radiomic features and clinical risk factors.

RESULTS

Four radiomic features closely related to the level of mitosis were obtained, and a mitotic radiomic model was constructed. The area under the curve (AUC) of the radiomics signature model used to predict mitotic levels in training and validation cohorts (training cohort AUC = 0.752; 95% confidence interval [95%CI] 0.674-0.829; validation cohort AUC = 0.764; 95% CI 0.667-0.862). Finally, the preoperative risk stratification nomogram combining radiomic features was equivalent to the clinically recognized gold standard AUC (0.965 vs. 0.983) (p = 0.117). The Cox regression analysis found that the nomogram score was one of the independent risk factors for the long-term prognosis of the patients.

CONCLUSION

Preoperative CT radiomic features can effectively predict the level of mitosis in GIST, and combined with preoperative tumor size, accurate preoperative risk stratification can be performed to guide clinical decision-making and individualized treatment.

摘要

目的

旨在基于计算机断层扫描(CT)影像组学特征建立胃肠道间质瘤(GIST)的有丝分裂预测模型和术前风险分层列线图。

方法

回顾性收集了 2009 年 7 月至 2015 年 9 月期间 267 例 GIST 患者,随机分为(6:4)训练队列和验证队列。从增强 CT 的门静脉期图像上勾画出 2D-肿瘤感兴趣区(ROI),并提取影像组学特征。使用 Lasso 回归方法选择有价值的特征,以建立用于预测 GIST 有丝分裂指数的影像组学模型。最后,结合影像组学特征和临床危险因素构建术前风险分层列线图。

结果

得到了 4 个与有丝分裂水平密切相关的影像组学特征,并构建了一个有丝分裂影像组学模型。在训练和验证队列中,用于预测有丝分裂水平的影像组学特征模型的曲线下面积(AUC)分别为 0.752(95%置信区间 [95%CI] 0.674-0.829)和 0.764(95%CI 0.667-0.862)。最后,结合影像组学特征的术前风险分层列线图与临床上公认的金标准 AUC 相当(0.965 与 0.983)(p=0.117)。Cox 回归分析发现,列线图评分是患者长期预后的独立危险因素之一。

结论

术前 CT 影像组学特征可有效预测 GIST 的有丝分裂水平,并结合术前肿瘤大小,可进行准确的术前风险分层,为临床决策和个体化治疗提供指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验