Suppr超能文献

基于力量肌电讯号的手势识别通道选择:手势测量点的通用模型。

Channel Selection for Gesture Recognition Using Force Myography: A Universal Model for Gesture Measurement Points.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2024;32:2016-2026. doi: 10.1109/TNSRE.2024.3403941. Epub 2024 May 29.

Abstract

Gesture recognition has emerged as a significant research domain in computer vision and human-computer interaction. One of the key challenges in gesture recognition is how to select the most useful channels that can effectively represent gesture movements. In this study, we have developed a channel selection algorithm that determines the number and placement of sensors that are critical to gesture classification. To validate this algorithm, we constructed a Force Myography (FMG)-based signal acquisition system. The algorithm considers each sensor as a distinct channel, with the most effective channel combinations and recognition accuracy determined through assessing the correlation between each channel and the target gesture, as well as the redundant correlation between different channels. The database was created by collecting experimental data from 10 healthy individuals who wore 16 sensors to perform 13 unique hand gestures. The results indicate that the average number of channels across the 10 participants was 3, corresponding to an 75% decrease in the initial channel count, with an average recognition accuracy of 94.46%. This outperforms four widely adopted feature selection algorithms, including Relief-F, mRMR, CFS, and ILFS. Moreover, we have established a universal model for the position of gesture measurement points and verified it with an additional five participants, resulting in an average recognition accuracy of 96.3%. This study provides a sound basis for identifying the optimal and minimum number and location of channels on the forearm and designing specialized arm rings with unique shapes.

摘要

手势识别已成为计算机视觉和人机交互领域的一个重要研究领域。手势识别的关键挑战之一是如何选择最有用的通道,这些通道能够有效地表示手势运动。在这项研究中,我们开发了一种通道选择算法,用于确定对手势分类至关重要的传感器数量和位置。为了验证该算法,我们构建了一个基于力感测(Force Myography,FMG)的信号采集系统。该算法将每个传感器视为一个独特的通道,通过评估每个通道与目标手势之间的相关性以及不同通道之间的冗余相关性,确定最有效的通道组合和识别准确率。该数据库是通过收集 10 位健康个体佩戴 16 个传感器执行 13 个独特手部手势的实验数据创建的。结果表明,在 10 位参与者中,平均通道数量为 3,与初始通道数量相比减少了 75%,平均识别准确率为 94.46%。这优于 Relief-F、mRMR、CFS 和 ILFS 等四种广泛采用的特征选择算法。此外,我们还建立了一个手势测量点位置的通用模型,并通过另外 5 位参与者进行了验证,平均识别准确率为 96.3%。这项研究为确定在前臂上的最佳和最小通道数量和位置以及设计具有独特形状的专用臂环提供了可靠的依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验