Suppr超能文献

基于 FMG 的手势识别的 k-锦标赛蚱蜢极端学习者。

k-Tournament Grasshopper Extreme Learner for FMG-Based Gesture Recognition.

机构信息

Chair of Measurement and Sensor Technology, Technische Universitat Chemnitz, 09126 Chemnitz, Germany.

出版信息

Sensors (Basel). 2023 Jan 18;23(3):1096. doi: 10.3390/s23031096.

Abstract

The recognition of hand signs is essential for several applications. Due to the variation of possible signals and the complexity of sensor-based systems for hand gesture recognition, a new artificial neural network algorithm providing high accuracy with a reduced architecture and automatic feature selection is needed. In this paper, a novel classification method based on an extreme learning machine (ELM), supported by an improved grasshopper optimization algorithm (GOA) as a core for a weight-pruning process, is proposed. The k-tournament grasshopper optimization algorithm was implemented to select and prune the ELM weights resulting in the proposed k-tournament grasshopper extreme learner (KTGEL) classifier. Myographic methods, such as force myography (FMG), deliver interesting signals that can build the basis for hand sign recognition. FMG was investigated to limit the number of sensors at suitable positions and provide adequate signal processing algorithms for perspective implementation in wearable embedded systems. Based on the proposed KTGEL, the number of sensors and the effect of the number of subjects was investigated in the first stage. It was shown that by increasing the number of subjects participating in the data collection, eight was the minimal number of sensors needed to result in acceptable sign recognition performance. Moreover, implemented with 3000 hidden nodes, after the feature selection wrapper, the ELM had both a microaverage precision and a microaverage sensitivity of 97% for the recognition of a set of gestures, including a middle ambiguity level. The KTGEL reduced the hidden nodes to only 1000, reaching the same total sensitivity with a reduced total precision of only 1% without needing an additional feature selection method.

摘要

手势识别对于许多应用至关重要。由于可能的信号变化以及基于传感器的手势识别系统的复杂性,需要一种新的人工神经网络算法,该算法具有减少的架构和自动特征选择功能,同时提供高精度。在本文中,提出了一种基于极限学习机(ELM)的新分类方法,该方法由改进的草蜢优化算法(GOA)支持,作为权重修剪过程的核心。实施了 k-锦标赛草蜢优化算法来选择和修剪 ELM 权重,从而得到所提出的 k-锦标赛草蜢极限学习者(KTGEL)分类器。肌电方法,如力肌电图(FMG),提供了有趣的信号,可以为手势识别奠定基础。研究了 FMG,以限制合适位置的传感器数量,并提供适当的信号处理算法,以便在可穿戴嵌入式系统中进行前瞻性实施。基于所提出的 KTGEL,在第一阶段研究了传感器数量和受试者数量的影响。结果表明,通过增加参与数据收集的受试者数量,需要 8 个传感器即可获得可接受的手势识别性能。此外,在经过特征选择包装器后,实现 3000 个隐藏节点的 ELM 在手势识别中具有 97%的微平均精度和微平均灵敏度,包括中等歧义水平。KTGEL 将隐藏节点减少到仅 1000 个,在无需额外特征选择方法的情况下,仅降低总精度 1%,即可达到相同的总灵敏度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a178/9920645/30ca45fde18b/sensors-23-01096-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验