Suppr超能文献

基于手势分类性能的表面肌电特征评估方法的比较研究。

Comparative Study of sEMG Feature Evaluation Methods Based on the Hand Gesture Classification Performance.

机构信息

Professorship for Measurements and Sensor Technology, Chemnitz University of Technology, Rechenhainer Straße 70, 09126 Chemnitz, Germany.

Laboratory of Signals, Systems, Artificial Intelligence and Networks, Digital Research Centre of Sfax, National School of Electronics and Telecommunications of Sfax, University of Sfax, Technopole of Sfax, Sfax 3021, Tunisia.

出版信息

Sensors (Basel). 2024 Jun 4;24(11):3638. doi: 10.3390/s24113638.

Abstract

Effective feature extraction and selection are crucial for the accurate classification and prediction of hand gestures based on electromyographic signals. In this paper, we systematically compare six filter and wrapper feature evaluation methods and investigate their respective impacts on the accuracy of gesture recognition. The investigation is based on several benchmark datasets and one real hand gesture dataset, including 15 hand force exercises collected from 14 healthy subjects using eight commercial sEMG sensors. A total of 37 time- and frequency-domain features were extracted from each sEMG channel. The benchmark dataset revealed that the minimum Redundancy Maximum Relevance (mRMR) feature evaluation method had the poorest performance, resulting in a decrease in classification accuracy. However, the RFE method demonstrated the potential to enhance classification accuracy across most of the datasets. It selected a feature subset comprising 65 features, which led to an accuracy of 97.14%. The Mutual Information (MI) method selected 200 features to reach an accuracy of 97.38%. The Feature Importance (FI) method reached a higher accuracy of 97.62% but selected 140 features. Further investigations have shown that selecting 65 and 75 features with the RFE methods led to an identical accuracy of 97.14%. A thorough examination of the selected features revealed the potential for three additional features from three specific sensors to enhance the classification accuracy to 97.38%. These results highlight the significance of employing an appropriate feature selection method to significantly reduce the number of necessary features while maintaining classification accuracy. They also underscore the necessity for further analysis and refinement to achieve optimal solutions.

摘要

有效的特征提取和选择对于基于肌电信号的手势准确分类和预测至关重要。在本文中,我们系统地比较了六种滤波器和包装器特征评估方法,并研究了它们各自对手势识别准确性的影响。该研究基于几个基准数据集和一个真实的手部手势数据集,其中包括 14 名健康受试者使用 8 个商业 sEMG 传感器采集的 15 种手部力量练习。从每个 sEMG 通道提取了 37 个时间和频域特征。基准数据集表明,最小冗余最大相关性(mRMR)特征评估方法的性能最差,导致分类精度降低。然而,RFE 方法显示出在大多数数据集上提高分类准确性的潜力。它选择了一个包含 65 个特征的特征子集,准确率为 97.14%。互信息(MI)方法选择了 200 个特征,准确率为 97.38%。特征重要性(FI)方法达到了更高的准确率 97.62%,但选择了 140 个特征。进一步的研究表明,使用 RFE 方法选择 65 和 75 个特征可以达到相同的 97.14%准确率。对所选特征的深入检查表明,从三个特定传感器中选择三个额外的特征可以将分类准确性提高到 97.38%。这些结果强调了采用适当的特征选择方法来显著减少所需特征数量同时保持分类准确性的重要性。它们还强调了进一步分析和改进以实现最佳解决方案的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58a5/11175337/65bc185056f7/sensors-24-03638-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验