Suppr超能文献

对极低出生体重儿氧饱和度和心率进行高度比较性时间序列分析,以预测呼吸结局。

Highly comparative time series analysis of oxygen saturation and heart rate to predict respiratory outcomes in extremely preterm infants.

机构信息

Department of Medicine, Division of Cardiology, University of Virginia School of Medicine, Charlottesville, VA, United States of America.

Department of Pediatrics, Case Western Reserve University School of Medicine, University Hospitals Rainbow Babies and Children's Hospital, Cleveland, OH, United States of America.

出版信息

Physiol Meas. 2024 Jun 3;45(5):055025. doi: 10.1088/1361-6579/ad4e91.

Abstract

Highly comparative time series analysis (HCTSA) is a novel approach involving massive feature extraction using publicly available code from many disciplines. The Prematurity-Related Ventilatory Control (Pre-Vent) observational multicenter prospective study collected bedside monitor data from>700extremely preterm infants to identify physiologic features that predict respiratory outcomes.. We calculated a subset of 33 HCTSA features on>7 M 10 min windows of oxygen saturation (SPO2) and heart rate (HR) from the Pre-Vent cohort to quantify predictive performance. This subset included representatives previously identified using unsupervised clustering on>3500HCTSA algorithms. We hypothesized that the best HCTSA algorithms would compare favorably to optimal PreVent physiologic predictor IH90_DPE (duration per event of intermittent hypoxemia events below 90%).The top HCTSA features were from a cluster of algorithms associated with the autocorrelation of SPO2 time series and identified low frequency patterns of desaturation as high risk. These features had comparable performance to and were highly correlated with IH90_DPE but perhaps measure the physiologic status of an infant in a more robust way that warrants further investigation. The top HR HCTSA features were symbolic transformation measures that had previously been identified as strong predictors of neonatal mortality. HR metrics were only important predictors at early days of life which was likely due to the larger proportion of infants whose outcome was death by any cause. A simple HCTSA model using 3 top features outperformed IH90_DPE at day of life 7 (.778 versus .729) but was essentially equivalent at day of life 28 (.849 versus .850).. These results validated the utility of a representative HCTSA approach but also provides additional evidence supporting IH90_DPE as an optimal predictor of respiratory outcomes.

摘要

高度比较时间序列分析(HCTSA)是一种涉及使用来自多个学科的公共代码进行大规模特征提取的新方法。早产相关通气控制(Pre-Vent)观察性多中心前瞻性研究从>700 例极早产儿收集床边监护数据,以确定预测呼吸结局的生理特征。我们在 Pre-Vent 队列中计算了氧饱和度(SpO2)和心率(HR)的>7M 10 分钟窗口的 HCTSA 特征的一个子集,以量化预测性能。该子集包括以前使用>3500 个 HCTSA 算法进行无监督聚类识别的代表。我们假设最佳 HCTSA 算法将与最佳 PreVent 生理预测指标 IH90_DPE(间歇性低氧血症事件持续时间每事件 90%)进行比较。最佳 HCTSA 特征来自与 SpO2 时间序列自相关相关的算法簇,并确定了低频率的饱和度下降模式作为高风险。这些特征与 IH90_DPE 具有可比的性能且高度相关,但可能以更稳健的方式衡量婴儿的生理状态,值得进一步研究。顶级 HR HCTSA 特征是符号变换度量,以前被确定为新生儿死亡率的强预测指标。HR 指标仅在生命早期是重要的预测指标,这可能是由于大多数婴儿的结局是任何原因导致的死亡。使用 3 个最佳特征的简单 HCTSA 模型在生命第 7 天的表现优于 IH90_DPE(0.778 对 0.729),但在生命第 28 天的表现基本相同(0.849 对 0.850)。这些结果验证了代表性 HCTSA 方法的实用性,也提供了额外的证据支持 IH90_DPE 作为呼吸结局的最佳预测指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f08/11485323/bfb29223227c/pmeaad4e91f1_hr.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验