Reinen Jenna M, Polosecki Pablo, Castro Eduardo, Corcoran Cheryl M, Cecchi Guillermo A, Colibazzi Tiziano
IBM T.J. Watson Research Center, Yorktown Heights, NY, USA.
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Schizophrenia (Heidelb). 2024 May 21;10(1):54. doi: 10.1038/s41537-024-00464-2.
The prospective study of youths at clinical high risk (CHR) for psychosis, including neuroimaging, can identify neural signatures predictive of psychosis outcomes using algorithms that integrate complex information. Here, to identify risk and psychosis conversion, we implemented multiple kernel learning (MKL), a multimodal machine learning approach allowing patterns from each modality to inform each other. Baseline multimodal scans (n = 74, 11 converters) included structural, resting-state functional imaging, and diffusion-weighted data. Multimodal MKL outperformed unimodal models (AUC = 0.73 vs. 0.66 in predicting conversion). Moreover, patterns learned by MKL were robust to training set variations, suggesting it can identify cross-modality redundancies and synergies to stabilize the predictive pattern. We identified many predictors consistent with the literature, including frontal cortices, cingulate, thalamus, and striatum. This highlights the advantage of methods that leverage the complex pathophysiology of psychosis.
对临床高危(CHR)青年进行精神病前瞻性研究,包括神经影像学,可以使用整合复杂信息的算法识别预测精神病结局的神经特征。在此,为了识别风险和精神病转化,我们采用了多核学习(MKL),这是一种多模态机器学习方法,允许来自每种模态的模式相互提供信息。基线多模态扫描(n = 74,11名转化者)包括结构、静息态功能成像和扩散加权数据。多模态MKL优于单模态模型(预测转化时的AUC = 0.73对0.66)。此外,MKL学习的模式对训练集变化具有鲁棒性,表明它可以识别跨模态冗余和协同作用以稳定预测模式。我们确定了许多与文献一致的预测因子,包括额叶皮质、扣带回、丘脑和纹状体。这突出了利用精神病复杂病理生理学的方法的优势。