Department of Machine and Metallic Technology, Munzur University, Tunceli, Turkey.
J Biomed Mater Res B Appl Biomater. 2024 Jun;112(6):e35415. doi: 10.1002/jbm.b.35415.
This study reports the synthesis and characterization of hydroxyapatite (HA)-based bio-composites reinforced with varying amounts (by weight, 1-15 wt.%) of bio-medium entropy alloy (BioMEA) for load-bearing implant applications. BioMEA powders consisting of Ti, Nb, Zr, and Mo were mechanically alloyed for 100 h and subsequently added to HA using powder metallurgy techniques. To show the effect of BioMEA, the microstructure, density, and mechanical tests have been conducted and the synthesized BioMEA was characterized by scanning electron microscope (SEM), x-ray diffractometer (XRD), and Fourier-transform infrared spectroscopy (FTIR) analysis. In addition, in vitro degradation behavior and bioactivity analyses of bio-composites have been conducted. XRD analysis revealed the formation of BioMEA after 20 h of mechanical alloying. The highest density value of 2.47 g/cm was found in 15 wt.% BioMEA-reinforced bio-composite. The addition of BioMEA reinforcement led to a significant increase in hardness and tensile strength values, with the highest values observed at 15 wt.% reinforcement. Compression tests demonstrated a significant increase in compressive strength and deformation capability of the bio-composites with the highest values observed at 15 wt.% BioMEA addition. The highest toughness of 7.68 kJ/m was measured in 10 wt.% MEA-reinforced bio-composites. The produced bio-composite materials have an elastic modulus between 3.5-5.5 GPa, which may provide a solution to the stress shielding problems caused by the high elastic modulus of metallic implant materials. The most severe degradation occurred in 15 wt.% MEA-reinforced bio-composites, and the effect of degradation caused a decrease in Ca and an increase in Ti-Ni-Zr-Mo in all bio-composites. These findings suggest that HA/BioMEA bio-composites have the potential to be developed as advanced biomaterials with moderate mechanical and biological properties for load-bearing implant applications.
本研究报告了基于羟基磷灰石(HA)的生物复合材料的合成与表征,该复合材料中加入了不同含量(按重量计,1-15wt.%)的生物中熵合金(BioMEA),用于承重植入物应用。BioMEA 粉末由 Ti、Nb、Zr 和 Mo 组成,通过机械合金化 100 小时,然后使用粉末冶金技术添加到 HA 中。为了展示 BioMEA 的效果,进行了微观结构、密度和力学测试,并通过扫描电子显微镜(SEM)、X 射线衍射仪(XRD)和傅里叶变换红外光谱(FTIR)分析对合成的 BioMEA 进行了表征。此外,还对生物复合材料的体外降解行为和生物活性进行了分析。XRD 分析表明,在机械合金化 20 小时后形成了 BioMEA。在 15wt.% BioMEA 增强生物复合材料中发现了最高的密度值 2.47g/cm。添加 BioMEA 增强剂导致硬度和拉伸强度值显著增加,在 15wt.%增强剂时观察到最高值。压缩测试表明,生物复合材料的抗压强度和变形能力显著提高,在 15wt.% BioMEA 加入时观察到最高值。在 10wt.%MEA 增强生物复合材料中测量到的最高韧性为 7.68kJ/m。所制备的生物复合材料的弹性模量在 3.5-5.5GPa 之间,这可能为解决由金属植入材料的高弹性模量引起的应力屏蔽问题提供了一种解决方案。在 15wt.%MEA 增强生物复合材料中发生了最严重的降解,降解的影响导致所有生物复合材料中的 Ca 减少,Ti-Ni-Zr-Mo 增加。这些发现表明,HA/BioMEA 生物复合材料有可能作为具有中等机械和生物学性能的先进生物材料开发,用于承重植入物应用。
J Biomed Mater Res B Appl Biomater. 2024-6
J Mech Behav Biomed Mater. 2011-7-22
Mater Sci Eng C Mater Biol Appl. 2016-3-17
J Biomater Appl. 2021-5
Mater Sci Eng C Mater Biol Appl. 2019-10-22
J Mater Sci Mater Med. 2009-8