Suppr超能文献

用于氧还原的Fe-N-C材料的轴向配位工程:理论见解

Axial Coordination Engineering on Fe-N-C Materials for Oxygen Reduction: Insights from Theory.

作者信息

Mou Yimin, Gao Shurui, Wang Yu, Li Yafei

机构信息

Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No. 1, Nanjing, 210023, P. R. China.

出版信息

Chemistry. 2024 Dec 10;30(69):e202402869. doi: 10.1002/chem.202402869. Epub 2024 Oct 31.

Abstract

Axial coordination engineering has emerged as an effective strategy to regulate the catalytic performance of metal-N-C materials for oxygen reduction reaction (ORR). However, the ORR mechanism and activity changes of their active centers modified by axial ligands are still unclear. Here, a comprehensive investigation of the ORR on a series of FeN-L moieties (L stands for an axial ligand) is performed using advanced density functional theory (DFT) calculations. The axial ligand has a substantial effect on the electronic structure and catalytic activity of the FeN center. Specially, FeN-CH is screened as a promising active moiety with superior ORR activity, as further revealed by constant-potential calculations and kinetic analysis. The enhanced activity is attributed to the weakened *OH adsorption caused by the altered electronic structure. Moreover, microkinetic modeling shows that at pH=1, FeN-CH possesses an impressive theoretical half-wave potential of 1.01 V, superior to the pristine Fe-N-C catalysts (0.88 V) calculated at the same level. These findings advance the understanding of the ORR mechanism of FeN-L and provide guidance for optimizing the ORR performance of single-metal-atom catalysts.

摘要

轴向配位工程已成为一种调节金属 - N - C材料氧还原反应(ORR)催化性能的有效策略。然而,轴向配体修饰的活性中心的ORR机理和活性变化仍不明确。在此,使用先进的密度泛函理论(DFT)计算对一系列FeN - L部分(L代表轴向配体)上的ORR进行了全面研究。轴向配体对FeN中心的电子结构和催化活性有显著影响。特别地,FeN - CH被筛选为具有优异ORR活性的有前景的活性部分,恒电位计算和动力学分析进一步揭示了这一点。活性增强归因于电子结构改变导致的*OH吸附减弱。此外,微观动力学模型表明,在pH = 1时,FeN - CH具有约1.01 V的令人印象深刻的理论半波电位,优于在相同水平计算的原始Fe - N - C催化剂(约0.88 V)。这些发现推进了对FeN - L的ORR机理的理解,并为优化单金属原子催化剂的ORR性能提供了指导。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验