Doshi Siddharth, Ludescher Dominik, Karst Julian, Floess Moritz, Carlström Johan, Li Bohan, Mintz Hemed Nofar, Duh Yi-Shiou, Melosh Nicholas A, Hentschel Mario, Brongersma Mark, Giessen Harald
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
Geballe Laboratory for Advanced Materials, Stanford University, 476 Lomita Mall, Stanford, CA 94305, USA.
Nanophotonics. 2024 Jan 4;13(12):2271-2280. doi: 10.1515/nanoph-2023-0640. eCollection 2024 May.
The optical and electronic tunability of the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has enabled emerging applications as diverse as bioelectronics, flexible electronics, and micro- and nano-photonics. High-resolution spatial patterning of PEDOT:PSS opens up opportunities for novel active devices in a range of fields. However, typical lithographic processes require tedious indirect patterning and dry etch processes, while solution-processing methods such as ink-jet printing have limited spatial resolution. Here, we report a method for direct write nano-patterning of commercially available PEDOT:PSS through electron-beam induced solubility modulation. The written structures are water stable and maintain the conductivity as well as electrochemical and optical properties of PEDOT:PSS, highlighting the broad utility of our method. We demonstrate the potential of our strategy by preparing prototypical nano-wire structures with feature sizes down to 250 nm, an order of magnitude finer than previously reported direct write methods, opening the possibility of writing chip-scale microelectronic and optical devices. We finally use the high-resolution writing capabilities to fabricate electrically-switchable optical diffraction gratings. We show active switching in this archetypal system with >95 % contrast at CMOS-compatible voltages of +2 V and -3 V, offering a route towards highly-miniaturized dynamic optoelectronic devices.
导电聚合物聚(3,4 - 亚乙基二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)的光学和电子可调性推动了其在生物电子学、柔性电子学以及微纳光子学等多种新兴领域的应用。PEDOT:PSS的高分辨率空间图案化技术为一系列领域中的新型有源器件创造了机会。然而,典型的光刻工艺需要繁琐的间接图案化和干法蚀刻工艺,而诸如喷墨打印等溶液处理方法的空间分辨率有限。在此,我们报告一种通过电子束诱导溶解度调制对市售PEDOT:PSS进行直接写入纳米图案化的方法。所写入的结构具有水稳定性,并保持了PEDOT:PSS的导电性以及电化学和光学性质,凸显了我们方法的广泛实用性。我们通过制备特征尺寸低至250纳米的原型纳米线结构展示了我们策略的潜力,该尺寸比先前报道的直接写入方法精细一个数量级,为写入芯片级微电子和光学器件开辟了可能性。我们最终利用这种高分辨率写入能力制造了电可切换光学衍射光栅。我们展示了在这个原型系统中,在 +2 V和 -3 V的CMOS兼容电压下,对比度大于95%的有源切换,为实现高度小型化的动态光电器件提供了一条途径。