School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA.
Cytoskeleton (Hoboken). 2024 Sep;81(9-10):473-487. doi: 10.1002/cm.21872. Epub 2024 May 22.
Nitric oxide (NO) production by endothelial nitric oxide synthase (eNOS) inhibits platelet and leukocyte adhesion while promoting vasorelaxation in smooth muscle cells. Dysfunctional regulation of eNOS is a hallmark of various vascular pathologies, notably atherosclerosis, often associated with areas of low shear stress on endothelial cells (ECs). While the link between EC morphology and local hemodynamics is acknowledged, the specific impact of EC morphology on eNOS regulation remains unclear. Morphological differences between elongated, aligned ECs and polygonal, randomly oriented ECs correspond to variations in focal adhesion and cytoskeletal organization, suggesting differing levels of cytoskeletal prestress. However, the functional outcomes of cytoskeletal prestress, particularly in the absence of shear stress, are not extensively studied in ECs. Some evidence suggests that elongated ECs exhibit decreased immunogenicity and enhanced NO production. This study aims to elucidate the signaling pathways governing VEGF-stimulated eNOS regulation in the aligned EC phenotype characterized by elongated and aligned cells within a monolayer. Using anisotropic topographic cues, bovine aortic endothelial cells (BAECs) were elongated and aligned, followed by VEGF treatment in the presence or absence of cytoskeletal tension inhibitors. Phosphorylation of eNOS ser1179, AKT ser437 and FAK Tyr397 in response to VEGF challenge were significantly heightened in aligned ECs compared to unaligned ECs. Moreover this response proved to be robustly tied to cytoskeletal tension as evinced by the abrogation of responses in the presence of the myosin II ATPase inhibitor, blebbistatin. Notably, this work demonstrates for the first time the reliance on FAK phosphorylation in VEGF-mediated eNOS activation and the comparatively greater contribution of the cytoskeletal machinery in propagating VEGF-eNOS signaling in aligned and elongated ECs. This research underscores the importance of utilizing appropriate vascular models in drug development and sheds light on potential mechanisms underlying vascular function and pathology that can help inform vascular graft design.
内皮型一氧化氮合酶 (eNOS) 产生的一氧化氮 (NO) 抑制血小板和白细胞黏附,同时促进平滑肌细胞血管舒张。eNOS 功能障碍调节是各种血管病变的标志,特别是动脉粥样硬化,通常与内皮细胞 (EC) 上的低切应力区域有关。虽然已经认识到 EC 形态与局部血液动力学之间的联系,但 EC 形态对 eNOS 调节的具体影响仍不清楚。长而排列整齐的 EC 与多边形、随机定向的 EC 之间的形态差异对应于粘着斑和细胞骨架组织的变化,表明细胞骨架预应力度的不同。然而,在没有切应力的情况下,细胞骨架预应力度的功能后果,特别是在没有切应力的情况下,在 EC 中并没有得到广泛研究。有证据表明,长形 EC 表现出免疫原性降低和增强的 NO 产生。本研究旨在阐明在单层内具有长形和排列整齐的细胞的 VEGF 刺激的 eNOS 调节的信号通路。使用各向异性的形貌线索,使牛主动脉内皮细胞 (BAEC) 伸长并排列整齐,然后在存在或不存在细胞骨架张力抑制剂的情况下用 VEGF 处理。与未排列的 EC 相比,VEGF 刺激后 eNOS ser1179、AKT ser437 和 FAK Tyr397 的磷酸化在排列整齐的 EC 中显著升高。此外,这种反应被证明与细胞骨架张力紧密相关,因为在肌球蛋白 II ATP 酶抑制剂 blebbistatin 的存在下,反应被阻断。值得注意的是,这项工作首次证明了 FAK 磷酸化在 VEGF 介导的 eNOS 激活中的依赖性,以及在排列整齐和伸长的 EC 中,细胞骨架机械在传播 VEGF-eNOS 信号中的相对较大贡献。这项研究强调了在药物开发中使用适当的血管模型的重要性,并揭示了血管功能和病理的潜在机制,这有助于为血管移植物设计提供信息。