Suppr超能文献

多模态问题上粒子群优化算法的虚拟位置引导策略

Virtual Position Guided Strategy for Particle Swarm Optimization Algorithms on Multimodal Problems.

作者信息

Li Chao, Sun Jun, Li Li-Wei, Shan Min, Palade Vasile, Wu Xiaojun

机构信息

Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence, Jiangnan University, No.1800, Lihu Avenue, Wuxi, Jiangsu 214122, China

Centre for Computational Science and Mathematical Modelling, Coventry University, Coventry, CV1 2TL, UK

出版信息

Evol Comput. 2024 Dec 2;32(4):427-458. doi: 10.1162/evco_a_00352.

Abstract

Premature convergence is a thorny problem for particle swarm optimization (PSO) algorithms, especially on multimodal problems, where maintaining swarm diversity is crucial. However, most enhancement strategies for PSO, including the existing diversity-guided strategies, have not fully addressed this issue. This paper proposes the virtual position guided (VPG) strategy for PSO algorithms. The VPG strategy calculates diversity values for two different populations and establishes a diversity baseline. It then dynamically guides the algorithm to conduct different search behaviors, through three phases-divergence, normal, and acceleration-in each iteration, based on the relationships among these diversity values and the baseline. Collectively, these phases orchestrate different schemes to balance exploration and exploitation, collaboratively steering the algorithm away from local optima and towards enhanced solution quality. The introduction of "virtual position" caters to the strategy's adaptability across various PSO algorithms, ensuring the generality and effectiveness of the proposed VPG strategy. With a single hyperparameter and a recommended usual setup, VPG is easy to implement. The experimental results demonstrate that the VPG strategy is superior to several canonical and the state-of-the-art strategies for diversity guidance, and is effective in improving the search performance of most PSO algorithms on multimodal problems of various dimensionalities.

摘要

过早收敛是粒子群优化(PSO)算法面临的一个棘手问题,尤其是在多模态问题上,在这类问题中保持群体多样性至关重要。然而,大多数针对PSO的增强策略,包括现有的多样性引导策略,都没有完全解决这个问题。本文提出了一种用于PSO算法的虚拟位置引导(VPG)策略。VPG策略计算两个不同群体的多样性值并建立一个多样性基线。然后,基于这些多样性值与基线之间的关系,在每次迭代中通过发散、正常和加速三个阶段动态地引导算法进行不同的搜索行为。总体而言,这些阶段精心安排了不同的方案来平衡探索和利用,协同引导算法远离局部最优并提高解的质量。“虚拟位置”的引入满足了该策略在各种PSO算法中的适应性,确保了所提出的VPG策略的通用性和有效性。VPG只需一个超参数和一个推荐的常用设置,易于实现。实验结果表明,VPG策略优于几种典型的和最新的多样性引导策略,并且在提高大多数PSO算法在各种维度的多模态问题上的搜索性能方面是有效的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验