Suppr超能文献

分支标签网络:使用分割分组多标签分类的解剖学人体气道标注方法

BranchLabelNet: Anatomical Human Airway Labeling Approach using a Dividing-and-Grouping Multi-Label Classification.

机构信息

School of Mechanical Engineering, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Republic of Korea.

An Giang University, Vietnam National University - Ho Chi Minh City, Ho Chi Minh, Vietnam.

出版信息

Med Biol Eng Comput. 2024 Oct;62(10):3107-3122. doi: 10.1007/s11517-024-03119-7. Epub 2024 May 23.

Abstract

Anatomical airway labeling is crucial for precisely identifying airways displaying symptoms such as constriction, increased wall thickness, and modified branching patterns, facilitating the diagnosis and treatment of pulmonary ailments. This study introduces an innovative airway labeling methodology, BranchLabelNet, which accounts for the fractal nature of airways and inherent hierarchical branch nomenclature. In developing this methodology, branch-related parameters, including position vectors, generation levels, branch lengths, areas, perimeters, and more, are extracted from a dataset of 1000 chest computed tomography (CT) images. To effectively manage this intricate branch data, we employ an n-ary tree structure that captures the complicated relationships within the airway tree. Subsequently, we employ a divide-and-group deep learning approach for multi-label classification, streamlining the anatomical airway branch labeling process. Additionally, we address the challenge of class imbalance in the dataset by incorporating the Tomek Links algorithm to maintain model reliability and accuracy. Our proposed airway labeling method provides robust branch designations and achieves an impressive average classification accuracy of 95.94% across fivefold cross-validation. This approach is adaptable for addressing similar complexities in general multi-label classification problems within biomedical systems.

摘要

解剖气道标记对于准确识别表现出气道收缩、壁增厚和分支模式改变等症状的气道至关重要,有助于肺部疾病的诊断和治疗。本研究介绍了一种创新的气道标记方法 BranchLabelNet,该方法考虑了气道的分形性质和固有的层次分支命名法。在开发这种方法时,从 1000 张胸部计算机断层扫描 (CT) 图像的数据集提取了与分支相关的参数,包括位置向量、生成级别、分支长度、面积、周长等。为了有效地管理这种复杂的分支数据,我们采用了 n 叉树结构来捕捉气道树内的复杂关系。然后,我们采用分而治之的深度学习方法进行多标签分类,简化了解剖气道分支标记过程。此外,我们通过结合 Tomek Links 算法来解决数据集的类不平衡问题,以保持模型的可靠性和准确性。我们提出的气道标记方法提供了稳健的分支指定,在五重交叉验证中实现了令人印象深刻的平均分类准确率 95.94%。这种方法适用于解决生物医学系统中一般多标签分类问题中的类似复杂性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验