Suppr超能文献

基于区域增长算法结合形态学和骨架分析的 CT 图像气道树分割方法。

Region growing algorithm combined with morphology and skeleton analysis for segmenting airway tree in CT images.

机构信息

School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China.

Department of Radiology of Shanghai Pulmonary Hospital, ZhengMin Road, YangPu District, Shanghai, China.

出版信息

J Xray Sci Technol. 2020;28(2):311-331. doi: 10.3233/XST-190627.

Abstract

BACKGROUND

Automatic segmentation of pulmonary airway tree is a challenging task in many clinical applications, including developing computer-aided detection and diagnosis schemes of lung diseases.

OBJECTIVE

To segment the pulmonary airway tree from the computed tomography (CT) chest images using a novel automatic method proposed in this study.

METHODS

This method combines a two-pass region growing algorithm with gray-scale morphological reconstruction and leakage elimination. The first-pass region growing is implemented to obtain a rough airway tree. The second-pass region growing and gray-scale morphological reconstruction are used to detect the distal airways. Finally, leakage detection is performed to remove leakage and refine the airway tree.

RESULTS

Our methods were compared with the gold standards. Forty-five clinical CT lung image scan cases were used in the experiments. Statistics on tree division order, branch number, and airway length were adopted for evaluation. The proposed method detected up to 12 generations of bronchi. On average, 148.85 branches were extracted with a false positive rate of 0.75%.

CONCLUSIONS

The results show that our method is accurate for pulmonary airway tree segmentation. The strategy of separating the leakage detection from the segmenting process is feasible and promising for ensuring a high branch detected rate with a low leakage volume.

摘要

背景

在许多临床应用中,自动分割肺部气道树是一项具有挑战性的任务,包括开发肺部疾病的计算机辅助检测和诊断方案。

目的

使用本研究提出的一种新的自动方法从 CT 胸部图像中分割肺部气道树。

方法

该方法结合了两阶段区域生长算法、灰度形态学重建和渗漏消除。第一阶段的区域生长用于获得粗略的气道树。第二阶段的区域生长和灰度形态学重建用于检测远端气道。最后,进行渗漏检测以去除渗漏并细化气道树。

结果

将我们的方法与金标准进行了比较。实验中使用了 45 例临床 CT 肺部图像扫描病例。采用树划分顺序、分支数量和气道长度的统计数据进行评估。所提出的方法可以检测到 12 代支气管。平均提取了 148.85 个分支,假阳性率为 0.75%。

结论

结果表明,我们的方法对肺部气道树分割是准确的。将渗漏检测与分割过程分离的策略是可行的,有望在降低漏体积的情况下提高分支检测率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验