Suppr超能文献

用于跨儿科和成人人群进行脑分割的深度学习模型。

A deep learning model for brain segmentation across pediatric and adult populations.

机构信息

icometrix, Leuven, Belgium.

Department of Development and Regeneration, KU Leuven, Leuven, Belgium.

出版信息

Sci Rep. 2024 May 22;14(1):11735. doi: 10.1038/s41598-024-61798-6.

Abstract

Automated quantification of brain tissues on MR images has greatly contributed to the diagnosis and follow-up of neurological pathologies across various life stages. However, existing solutions are specifically designed for certain age ranges, limiting their applicability in monitoring brain development from infancy to late adulthood. This retrospective study aims to develop and validate a brain segmentation model across pediatric and adult populations. First, we trained a deep learning model to segment tissues and brain structures using T1-weighted MR images from 390 patients (age range: 2-81 years) across four different datasets. Subsequently, the model was validated on a cohort of 280 patients from six distinct test datasets (age range: 4-90 years). In the initial experiment, the proposed deep learning-based pipeline, icobrain-dl, demonstrated segmentation accuracy comparable to both pediatric and adult-specific models across diverse age groups. Subsequently, we evaluated intra- and inter-scanner variability in measurements of various tissues and structures in both pediatric and adult populations computed by icobrain-dl. Results demonstrated significantly higher reproducibility compared to similar brain quantification tools, including childmetrix, FastSurfer, and the medical device icobrain v5.9 (p-value< 0.01). Finally, we explored the potential clinical applications of icobrain-dl measurements in diagnosing pediatric patients with Cerebral Visual Impairment and adult patients with Alzheimer's Disease.

摘要

基于磁共振成像的脑组织结构自动量化技术在各年龄段神经病理学的诊断和随访中发挥了重要作用。然而,现有的解决方案是专门为特定年龄段设计的,限制了它们在监测从婴儿期到成年晚期的大脑发育方面的应用。本回顾性研究旨在开发和验证一种适用于儿科和成人人群的脑分割模型。首先,我们使用来自四个不同数据集的 390 名患者(年龄范围:2-81 岁)的 T1 加权磁共振图像来训练深度学习模型以分割组织和脑结构。随后,我们在六个不同的测试数据集(年龄范围:4-90 岁)的 280 名患者中对该模型进行了验证。在初始实验中,所提出的基于深度学习的 icobrain-dl 管道在不同年龄段的儿科和成人特定模型中均表现出可比的分割准确性。随后,我们评估了 icobrain-dl 在儿科和成人人群中计算的各种组织和结构测量的内部和扫描仪间变异性。结果表明,与类似的脑定量工具(包括 childmetrix、FastSurfer 和医疗设备 icobrain v5.9)相比,该模型具有更高的可重复性(p 值<0.01)。最后,我们探讨了 icobrain-dl 测量在诊断小儿脑视觉障碍和成人阿尔茨海默病患者中的潜在临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da70/11111768/443db21e8300/41598_2024_61798_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验