Taulemesse François, Le Gouis Jacques, Gouache David, Gibon Yves, Allard Vincent
INRA, UMR 1095 Génétique Diversité et Ecophysiologie des Céréales, Clermont-Ferrand, France; Université Blaise Pascal, UMR 1095 Génétique Diversité et Ecophysiologie des Céréales, Aubière, France; Arvalis-Institut du Végétal, Service Biotechnologies, Boigneville, France.
INRA, UMR 1095 Génétique Diversité et Ecophysiologie des Céréales, Clermont-Ferrand, France; Université Blaise Pascal, UMR 1095 Génétique Diversité et Ecophysiologie des Céréales, Aubière, France.
PLoS One. 2015 Mar 23;10(3):e0120291. doi: 10.1371/journal.pone.0120291. eCollection 2015.
In bread wheat (Triticum aestivum L.), the simultaneous improvement of both yield and grain protein is difficult because of the strong negative relationship between these two traits. However, some genotypes deviate positively from this relationship and this has been linked to their ability to take up nitrogen (N) during the post-flowering period, regardless of their N status at flowering. The physiological and genetic determinants of post-flowering N uptake relating to N satiety are poorly understood. This study uses semi-hydroponic culture of cv. Récital under controlled conditions to explore these controls. The first objective was to record the effects of contrasting N status at flowering on post-flowering nitrate (NO₃⁻) uptake under non-limiting NO₃⁻ conditions, while following the expression of key genes involved in NO₃⁻ uptake and assimilation. We found that post-flowering NO₃⁻ uptake was strongly influenced by plant N status at flowering during the first 300-400 degree-days after flowering, overlapping with a probable regulation of nitrate uptake exerted by N demand for growth. The uptake of NO₃⁻ correlated well with the expression of the gene TaNRT2.1, coding for a root NO₃⁻ transporter, which seems to play a major role in post-flowering NO₃⁻ uptake. These results provide a useful knowledge base for future investigation of genetic variability in post-flowering N uptake and may lead to concomitant gains in both grain yield and grain protein in wheat.
在面包小麦(普通小麦)中,由于产量和籽粒蛋白质含量这两个性状之间存在强烈的负相关关系,要同时提高这两个性状是很困难的。然而,一些基因型偏离了这种关系,呈正相关,这与其在花后吸收氮(N)的能力有关,而与它们在开花时的氮素状况无关。关于与氮饱足相关的花后氮吸收的生理和遗传决定因素,人们了解得很少。本研究在可控条件下采用半水培法种植品种Récital来探究这些调控因素。第一个目标是记录开花时不同氮素状况对花后在硝酸盐(NO₃⁻)非限制条件下NO₃⁻吸收的影响,同时跟踪参与NO₃⁻吸收和同化的关键基因的表达。我们发现,在开花后的前300 - 400度日期间,花后NO₃⁻吸收受到开花时植株氮素状况的强烈影响,这与生长对氮的需求可能对硝酸盐吸收产生的调控相重叠。NO₃⁻的吸收与编码根NO₃⁻转运蛋白的TaNRT2.1基因的表达密切相关,该基因似乎在花后NO₃⁻吸收中起主要作用。这些结果为未来研究花后氮吸收的遗传变异性提供了有用的知识库,并可能使小麦的籽粒产量和籽粒蛋白质含量同时提高。