Suppr超能文献

基于人工智能的口腔疾病软件创新:临床-组织病理学相关性诊断准确性的初步研究。

The innovation of AI-based software in oral diseases: clinical-histopathological correlation diagnostic accuracy primary study.

机构信息

Department of Oral maxillofacial Pathology, Faculty of Dentistry, Cairo University, Cairo, Egypt.

Department of Oral Pathology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt.

出版信息

BMC Oral Health. 2024 May 22;24(1):598. doi: 10.1186/s12903-024-04347-x.

Abstract

BACKGROUND

Machine learning (ML) through artificial intelligence (AI) could provide clinicians and oral pathologists to advance diagnostic problems in the field of potentially malignant lesions, oral cancer, periodontal diseases, salivary gland disease, oral infections, immune-mediated disease, and others. AI can detect micro-features beyond human eyes and provide solution in critical diagnostic cases.

OBJECTIVE

The objective of this study was developing a software with all needed feeding data to act as AI-based program to diagnose oral diseases. So our research question was: Can we develop a Computer-Aided Software for accurate diagnosis of oral diseases based on clinical and histopathological data inputs?

METHOD

The study sample included clinical images, patient symptoms, radiographic images, histopathological images and texts for the oral diseases of interest in the current study (premalignant lesions, oral cancer, salivary gland neoplasms, immune mediated oral mucosal lesions, oral reactive lesions) total oral diseases enrolled in this study was 28 diseases retrieved from the archives of oral maxillofacial pathology department. Total 11,200 texts and 3000 images (2800 images were used for training data to the program and 100 images were used as test data to the program and 100 cases for calculating accuracy, sensitivity& specificity).

RESULTS

The correct diagnosis rates for group 1 (software users), group 2 (microscopic users) and group 3 (hybrid) were 87%, 90.6, 95% respectively. The reliability for inter-observer value was done by calculating Cronbach's alpha and interclass correlation coefficient. The test revealed for group 1, 2 and 3 the following values respectively 0.934, 0.712 & 0.703. All groups showed acceptable reliability especially for Diagnosis Oral Diseases Software (DODS) that revealed higher reliability value than other groups. However, The accuracy, sensitivity & specificity of this software was lower than those of oral pathologists (master's degree).

CONCLUSION

The correct diagnosis rate of DODS was comparable to oral pathologists using standard microscopic examination. The DODS program could be utilized as diagnostic guidance tool with high reliability & accuracy.

摘要

背景

通过人工智能(AI)进行机器学习(ML)可以为临床医生和口腔病理学家提供帮助,以解决潜在恶性病变、口腔癌、牙周病、唾液腺疾病、口腔感染、免疫介导性疾病等领域的诊断问题。AI 可以检测到人类肉眼无法识别的微观特征,并为关键诊断病例提供解决方案。

目的

本研究旨在开发一款具有所有必要输入数据的软件,作为基于 AI 的程序来诊断口腔疾病。因此,我们的研究问题是:我们能否开发一种基于临床和组织病理学数据输入的计算机辅助软件来准确诊断口腔疾病?

方法

研究样本包括当前研究中感兴趣的口腔疾病的临床图像、患者症状、影像学图像、组织病理学图像和文本(癌前病变、口腔癌、唾液腺肿瘤、免疫介导性口腔黏膜病变、口腔反应性病变),总共纳入了 28 种口腔疾病,这些疾病均来自口腔颌面病理学系的档案。总共有 11200 个文本和 3000 个图像(2800 个图像用于程序的训练数据,100 个图像用于程序的测试数据,100 个病例用于计算准确性、灵敏度和特异性)。

结果

第 1 组(软件使用者)、第 2 组(显微镜使用者)和第 3 组(混合使用者)的正确诊断率分别为 87%、90.6%和 95%。通过计算 Cronbach's alpha 和组内相关系数来评估观察者间的可靠性。结果显示,第 1、2 和 3 组的 Cronbach's alpha 值分别为 0.934、0.712 和 0.703,组内相关系数分别为 0.743、0.528 和 0.617。所有组均表现出可接受的可靠性,尤其是对于诊断口腔疾病软件(DODS),其可靠性值高于其他组。然而,该软件的准确性、灵敏度和特异性均低于硕士学位的口腔病理学家。

结论

DODS 的正确诊断率与使用标准显微镜检查的口腔病理学家相当。DODS 程序可以作为一种具有高可靠性和准确性的诊断指导工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1497/11112957/62317ea08763/12903_2024_4347_Figa_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验