Suppr超能文献

vcferr:单核苷酸多态性基因分型错误模拟框架的开发、验证与应用

vcferr: Development, validation, and application of a single nucleotide polymorphism genotyping error simulation framework.

作者信息

Nagraj V P, Scholz Matthew, Jessa Shakeel, Ge Jianye, Woerner August E, Huang Meng, Budowle Bruce, Turner Stephen D

机构信息

Signature Science LLC., Austin, TX, 78759, USA.

Center for Human Identification, Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.

出版信息

F1000Res. 2022 Jul 11;11:775. doi: 10.12688/f1000research.122840.1. eCollection 2022.

Abstract

Genotyping error can impact downstream single nucleotide polymorphism (SNP)-based analyses. Simulating various modes and levels of error can help investigators better understand potential biases caused by miscalled genotypes. We have developed and validated vcferr, a tool to probabilistically simulate genotyping error and missingness in variant call format (VCF) files. We demonstrate how vcferr could be used to address a research question by introducing varying levels of error of different type into a sample in a simulated pedigree, and assessed how kinship analysis degrades as a function of the kind and type of error. vcferr is available for installation via PyPi (https://pypi.org/project/vcferr/) or conda (https://anaconda.org/bioconda/vcferr). The software is released under the MIT license with source code available on GitHub (https://github.com/signaturescience/vcferr).

摘要

基因分型错误会影响基于单核苷酸多态性(SNP)的下游分析。模拟各种错误模式和水平可以帮助研究人员更好地理解错误基因型导致的潜在偏差。我们开发并验证了vcferr,这是一种用于概率性模拟变异调用格式(VCF)文件中基因分型错误和缺失情况的工具。我们展示了如何通过在模拟家系样本中引入不同类型和水平的错误来使用vcferr解决研究问题,并评估亲缘关系分析如何随错误的种类和类型而退化。vcferr可通过PyPi(https://pypi.org/project/vcferr/)或conda(https://anaconda.org/bioconda/vcferr)进行安装。该软件根据麻省理工学院许可发布,其源代码可在GitHub(https://github.com/signaturescience/vcferr)上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17d5/11109540/0e82fb1bd781/f1000research-11-134883-g0000.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验