文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 YOLOv7(YOLO-T)的茶叶病害检测与识别。

Tea leaf disease detection and identification based on YOLOv7 (YOLO-T).

机构信息

Department of Farm Power and Machinery, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.

Department of Food Engineering and Technology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.

出版信息

Sci Rep. 2023 Apr 13;13(1):6078. doi: 10.1038/s41598-023-33270-4.


DOI:10.1038/s41598-023-33270-4
PMID:37055480
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10102080/
Abstract

A reliable and accurate diagnosis and identification system is required to prevent and manage tea leaf diseases. Tea leaf diseases are detected manually, increasing time and affecting yield quality and productivity. This study aims to present an artificial intelligence-based solution to the problem of tea leaf disease detection by training the fastest single-stage object detection model, YOLOv7, on the diseased tea leaf dataset collected from four prominent tea gardens in Bangladesh. 4000 digital images of five types of leaf diseases are collected from these tea gardens, generating a manually annotated, data-augmented leaf disease image dataset. This study incorporates data augmentation approaches to solve the issue of insufficient sample sizes. The detection and identification results for the YOLOv7 approach are validated by prominent statistical metrics like detection accuracy, precision, recall, mAP value, and F1-score, which resulted in 97.3%, 96.7%, 96.4%, 98.2%, and 0.965, respectively. Experimental results demonstrate that YOLOv7 for tea leaf diseases in natural scene images is superior to existing target detection and identification networks, including CNN, Deep CNN, DNN, AX-Retina Net, improved DCNN, YOLOv5, and Multi-objective image segmentation. Hence, this study is expected to minimize the workload of entomologists and aid in the rapid identification and detection of tea leaf diseases, thus minimizing economic losses.

摘要

需要一个可靠且准确的诊断和识别系统,以预防和管理茶叶疾病。茶叶疾病是通过人工检测的,这会耗费大量时间,并影响产量、质量和生产力。本研究旨在通过在从孟加拉国四个著名茶园收集的病叶数据集上训练最快的单阶段目标检测模型 YOLOv7,为茶叶疾病检测问题提供一种基于人工智能的解决方案。从这些茶园中收集了 5 种叶片疾病的 4000 张数字图像,生成了一个手动标注、数据增强的叶片疾病图像数据集。本研究采用数据增强方法来解决样本量不足的问题。通过使用检测准确率、精确率、召回率、mAP 值和 F1 得分等重要统计指标,验证了 YOLOv7 的检测和识别结果,分别达到了 97.3%、96.7%、96.4%、98.2%和 0.965。实验结果表明,YOLOv7 在自然场景图像中的茶叶疾病检测优于现有的目标检测和识别网络,包括 CNN、Deep CNN、DNN、AX-Retina Net、改进的 DCNN、YOLOv5 和多目标图像分割。因此,本研究有望减轻昆虫学家的工作量,并帮助快速识别和检测茶叶疾病,从而最大限度地减少经济损失。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1558/10102080/70a2082f0fe9/41598_2023_33270_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1558/10102080/b77cc30a7972/41598_2023_33270_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1558/10102080/0703d5045750/41598_2023_33270_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1558/10102080/1e2022b94d8a/41598_2023_33270_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1558/10102080/b5356f30b3fb/41598_2023_33270_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1558/10102080/efbae18a4cc0/41598_2023_33270_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1558/10102080/614602b145d0/41598_2023_33270_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1558/10102080/eb3088c20762/41598_2023_33270_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1558/10102080/a2ac96f5388c/41598_2023_33270_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1558/10102080/4b385aee5824/41598_2023_33270_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1558/10102080/70a2082f0fe9/41598_2023_33270_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1558/10102080/b77cc30a7972/41598_2023_33270_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1558/10102080/0703d5045750/41598_2023_33270_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1558/10102080/1e2022b94d8a/41598_2023_33270_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1558/10102080/b5356f30b3fb/41598_2023_33270_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1558/10102080/efbae18a4cc0/41598_2023_33270_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1558/10102080/614602b145d0/41598_2023_33270_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1558/10102080/eb3088c20762/41598_2023_33270_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1558/10102080/a2ac96f5388c/41598_2023_33270_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1558/10102080/4b385aee5824/41598_2023_33270_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1558/10102080/70a2082f0fe9/41598_2023_33270_Fig10_HTML.jpg

相似文献

[1]
Tea leaf disease detection and identification based on YOLOv7 (YOLO-T).

Sci Rep. 2023-4-13

[2]
Detection and identification of tea leaf diseases based on AX-RetinaNet.

Sci Rep. 2022-2-9

[3]
BRA-YOLOv7: improvements on large leaf disease object detection using FasterNet and dual-level routing attention in YOLOv7.

Front Plant Sci. 2024-12-9

[4]
Detection of dental caries under fixed dental prostheses by analyzing digital panoramic radiographs with artificial intelligence algorithms based on deep learning methods.

BMC Oral Health. 2025-2-10

[5]
TBC-YOLOv7: a refined YOLOv7-based algorithm for tea bud grading detection.

Front Plant Sci. 2023-8-17

[6]
Advancing common bean (Phaseolus vulgaris L.) disease detection with YOLO driven deep learning to enhance agricultural AI.

Sci Rep. 2024-7-6

[7]
YOLOv7-DWS: tea bud recognition and detection network in multi-density environment via improved YOLOv7.

Front Plant Sci. 2025-1-7

[8]
Automated detection of selected tea leaf diseases in Bangladesh with convolutional neural network.

Sci Rep. 2024-6-18

[9]
YOLOv8-RMDA: Lightweight YOLOv8 Network for Early Detection of Small Target Diseases in Tea.

Sensors (Basel). 2024-5-1

[10]
Grey Blight Disease Detection on Tea Leaves Using Improved Deep Convolutional Neural Network.

Comput Intell Neurosci. 2023

引用本文的文献

[1]
A review of plant leaf disease identification by deep learning algorithms.

Front Plant Sci. 2025-8-20

[2]
Investigation of an Efficient Multi-Class Cotton Leaf Disease Detection Algorithm That Leverages YOLOv11.

Sensors (Basel). 2025-7-16

[3]
teaLeafBD: A comprehensive image dataset to classify the diseased tea leaf to automate the leaf selection process in Bangladesh.

Data Brief. 2025-6-10

[4]
Plant leaf disease detection using vision transformers for precision agriculture.

Sci Rep. 2025-7-1

[5]
YOLO-ODD: an improved YOLOv8s model for onion foliar disease detection.

Front Plant Sci. 2025-5-22

[6]
MAF-MixNet: Few-Shot Tea Disease Detection Based on Mixed Attention and Multi-Path Feature Fusion.

Plants (Basel). 2025-4-21

[7]
Image segmentation and coverage estimation of deep-sea polymetallic nodules based on lightweight deep learning model.

Sci Rep. 2025-3-24

[8]
High-resolution dataset for tea garden disease management: Precision agriculture insights.

Data Brief. 2025-2-12

[9]
An optimized lightweight real-time detection network model for IoT embedded devices.

Sci Rep. 2025-1-30

[10]
BRA-YOLOv7: improvements on large leaf disease object detection using FasterNet and dual-level routing attention in YOLOv7.

Front Plant Sci. 2024-12-9

本文引用的文献

[1]
A Multiscale Lightweight and Efficient Model Based on YOLOv7: Applied to Citrus Orchard.

Plants (Basel). 2022-11-27

[2]
Insulator-Defect Detection Algorithm Based on Improved YOLOv7.

Sensors (Basel). 2022-11-14

[3]
Deep Learning-Based Automatic Detection of Ships: An Experimental Study Using Satellite Images.

J Imaging. 2022-6-28

[4]
Detection and identification of tea leaf diseases based on AX-RetinaNet.

Sci Rep. 2022-2-9

[5]
Detection of mold on the food surface using YOLOv5.

Curr Res Food Sci. 2021-10-16

[6]
A Robust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests Recognition.

Sensors (Basel). 2017-9-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索