文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

scCDC:一种用于单细胞和单核 RNA-seq 数据中基因特异性污染检测和校正的计算方法。

scCDC: a computational method for gene-specific contamination detection and correction in single-cell and single-nucleus RNA-seq data.

机构信息

Centre of Biomedical Systems and Informatics, International Campus, ZJU-UoE Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, 314400, China.

Department of Statistics and Data Science, University of California, Los Angeles, CA, 90095, USA.

出版信息

Genome Biol. 2024 May 23;25(1):136. doi: 10.1186/s13059-024-03284-w.


DOI:10.1186/s13059-024-03284-w
PMID:38783325
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11112958/
Abstract

In droplet-based single-cell and single-nucleus RNA-seq assays, systematic contamination of ambient RNA molecules biases the quantification of gene expression levels. Existing methods correct the contamination for all genes globally. However, there lacks specific evaluation of correction efficacy for varying contamination levels. Here, we show that DecontX and CellBender under-correct highly contaminating genes, while SoupX and scAR over-correct lowly/non-contaminating genes. Here, we develop scCDC as the first method to detect the contamination-causing genes and only correct expression levels of these genes, some of which are cell-type markers. Compared with existing decontamination methods, scCDC excels in decontaminating highly contaminating genes while avoiding over-correction of other genes.

摘要

在基于液滴的单细胞和单细胞核 RNA 测序分析中,环境 RNA 分子的系统性污染会影响基因表达水平的定量。现有的方法可以全局纠正所有基因的污染。然而,对于不同的污染水平,缺乏对校正效果的具体评估。在这里,我们发现 DecontX 和 CellBender 对高度污染的基因校正不足,而 SoupX 和 scAR 对低度/非污染的基因校正过度。在这里,我们开发了 scCDC,作为第一个检测引起污染的基因并仅校正这些基因表达水平的方法,其中一些是细胞类型标志物。与现有的去污染方法相比,scCDC 擅长于去除高度污染的基因,同时避免对其他基因的过度校正。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6046/11112958/d405fe495b25/13059_2024_3284_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6046/11112958/51553a2f0f11/13059_2024_3284_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6046/11112958/212191aa8e16/13059_2024_3284_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6046/11112958/1772f391ac79/13059_2024_3284_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6046/11112958/8fbdcc7d7c2b/13059_2024_3284_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6046/11112958/9447940e0f2d/13059_2024_3284_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6046/11112958/ad79776eb93b/13059_2024_3284_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6046/11112958/d405fe495b25/13059_2024_3284_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6046/11112958/51553a2f0f11/13059_2024_3284_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6046/11112958/212191aa8e16/13059_2024_3284_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6046/11112958/1772f391ac79/13059_2024_3284_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6046/11112958/8fbdcc7d7c2b/13059_2024_3284_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6046/11112958/9447940e0f2d/13059_2024_3284_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6046/11112958/ad79776eb93b/13059_2024_3284_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6046/11112958/d405fe495b25/13059_2024_3284_Fig7_HTML.jpg

相似文献

[1]
scCDC: a computational method for gene-specific contamination detection and correction in single-cell and single-nucleus RNA-seq data.

Genome Biol. 2024-5-23

[2]
The effect of background noise and its removal on the analysis of single-cell expression data.

Genome Biol. 2023-6-19

[3]
Decontamination of ambient RNA in single-cell RNA-seq with DecontX.

Genome Biol. 2020-3-5

[4]
FastCAR: fast correction for ambient RNA to facilitate differential gene expression analysis in single-cell RNA-sequencing datasets.

BMC Genomics. 2023-11-29

[5]
Mitigating ambient RNA and doublets effects on single cell transcriptomics analysis in cancer research.

Cancer Lett. 2025-6-28

[6]
Using RNentropy to Detect Significant Variation in Gene Expression Across Multiple RNA-Seq or Single-Cell RNA-Seq Samples.

Methods Mol Biol. 2021

[7]
A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors.

Nat Med. 2020-5-11

[8]
Computational Analysis of Single-Cell RNA-Seq Data.

Methods Mol Biol. 2021

[9]
kallisto, bustools and kb-python for quantifying bulk, single-cell and single-nucleus RNA-seq.

Nat Protoc. 2025-3

[10]
SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data.

Gigascience. 2020-12-26

引用本文的文献

[1]
Benchmarking of computational demultiplexing methods for single-nucleus RNA sequencing data.

Brief Bioinform. 2025-7-2

[2]
Cluster-independent multiscale marker identification in single-cell RNA-seq data using localized marker detector (LMD).

Commun Biol. 2025-7-16

本文引用的文献

[1]
Unsupervised removal of systematic background noise from droplet-based single-cell experiments using CellBender.

Nat Methods. 2023-9

[2]
The effect of background noise and its removal on the analysis of single-cell expression data.

Genome Biol. 2023-6-19

[3]
scDesign3 generates realistic in silico data for multimodal single-cell and spatial omics.

Nat Biotechnol. 2024-2

[4]
CellMarker 2.0: an updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data.

Nucleic Acids Res. 2023-1-6

[5]
A human breast atlas integrating single-cell proteomics and transcriptomics.

Dev Cell. 2022-6-6

[6]
Normalizing and denoising protein expression data from droplet-based single cell profiling.

Nat Commun. 2022-4-19

[7]
Cellular and transcriptional diversity over the course of human lactation.

Proc Natl Acad Sci U S A. 2022-4-12

[8]
Single-Cell RNA Sequencing Identifies Intra-Graft Population Heterogeneity in Acute Heart Allograft Rejection in Mouse.

Front Immunol. 2022

[9]
Single-Cell Analysis Reveals Unexpected Cellular Changes and Transposon Expression Signatures in the Colonic Epithelium of Treatment-Naïve Adult Crohn's Disease Patients.

Cell Mol Gastroenterol Hepatol. 2022

[10]
Simulating Single-Cell Gene Expression Count Data with Preserved Gene Correlations by scDesign2.

J Comput Biol. 2022-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索