文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用局部标记检测器(LMD)在单细胞RNA测序数据中进行独立于聚类的多尺度标记识别。

Cluster-independent multiscale marker identification in single-cell RNA-seq data using localized marker detector (LMD).

作者信息

Li Ruiqi, Qu Rihao, Parisi Fabio, Strino Francesco, Lam Hainan, Stanley Jay S, Cheng Xiuyuan, Myung Peggy, Kluger Yuval

机构信息

Computational Biology & Biomedical Informatics Program, Yale University, New Haven, CT, USA.

Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.

出版信息

Commun Biol. 2025 Jul 16;8(1):1058. doi: 10.1038/s42003-025-08485-y.


DOI:10.1038/s42003-025-08485-y
PMID:40670619
Abstract

Identifying accurate cell markers in single-cell RNA-seq data is crucial for understanding cellular diversity and function. Localized Marker Detector (LMD) is a novel tool to identify "localized genes"-genes exclusively expressed in groups of highly similar cells-thereby characterizing cellular diversity in a multi-resolution and fine-grained manner. LMD constructs a cell-cell affinity graph, diffuses the gene expression value across the cell graph, and assigns a score to each gene based on its diffusion dynamics. LMD's candidate markers can be grouped into functional gene modules, which accurately reflect cell types, subtypes, and other sources of variation such as cell cycle status. We apply LMD to mouse bone marrow and hair follicle dermal condensate datasets, where it facilitates cross-sample comparisons by identifying shared and sample-specific gene signatures and novel cell populations, without requiring batch effect correction or integration. We also assess the performance of LMD across ten single-cell RNA sequencing datasets, compare it to eight existing methods with similar objectives, and find that LMD outperforms the other methods evaluated.

摘要

在单细胞RNA测序数据中识别准确的细胞标志物对于理解细胞多样性和功能至关重要。局部标志物检测器(LMD)是一种新型工具,用于识别“局部基因”——即在高度相似的细胞群体中特异性表达的基因——从而以多分辨率和细粒度的方式表征细胞多样性。LMD构建细胞-细胞亲和图,在细胞图上扩散基因表达值,并根据其扩散动力学为每个基因分配一个分数。LMD的候选标志物可以分组为功能基因模块,这些模块准确反映细胞类型、亚型以及其他变异来源,如细胞周期状态。我们将LMD应用于小鼠骨髓和毛囊真皮凝聚物数据集,通过识别共享的和样本特异性的基因特征以及新的细胞群体,LMD有助于跨样本比较,而无需批次效应校正或整合。我们还在十个单细胞RNA测序数据集上评估了LMD的性能,将其与八个具有类似目标的现有方法进行比较,发现LMD优于其他评估方法。

相似文献

[1]
Cluster-independent multiscale marker identification in single-cell RNA-seq data using localized marker detector (LMD).

Commun Biol. 2025-7-16

[2]
LMD: Cluster-Independent Multiscale Marker Identification in Single-cell RNA-seq Data.

bioRxiv. 2024-10-17

[3]
ScInfeR: an efficient method for annotating cell types and sub-types in single-cell RNA-seq, ATAC-seq, and spatial omics.

Brief Bioinform. 2025-5-1

[4]
New insights for precision treatment of glioblastoma from analysis of single-cell lncRNA expression.

J Cancer Res Clin Oncol. 2021-7

[5]
scTsI: an effective two-stage imputation method for single-cell RNA-seq data.

Brief Bioinform. 2025-5-1

[6]
DiSC: a statistical tool for fast differential expression analysis of individual-level single-cell RNA-seq data.

Bioinformatics. 2025-6-2

[7]
A scRNA-seq reference contrasting living and early post-mortem human retina across diverse donor states.

Hum Genomics. 2025-7-14

[8]
Differentiable graph clustering with structural grouping for single-cell RNA-seq data.

Bioinformatics. 2025-7-1

[9]
Reference Vector-guided Evolutionary Algorithm for cluster analysis of single-cell transcriptomes.

Comput Methods Programs Biomed. 2025-9

[10]
Deep learning tackles single-cell analysis-a survey of deep learning for scRNA-seq analysis.

Brief Bioinform. 2022-1-17

本文引用的文献

[1]
scCDC: a computational method for gene-specific contamination detection and correction in single-cell and single-nucleus RNA-seq data.

Genome Biol. 2024-5-23

[2]
Gene trajectory inference for single-cell data by optimal transport metrics.

Nat Biotechnol. 2025-2

[3]
What is a cell type?

Science. 2023-8-18

[4]
A Review of Single-Cell RNA-Seq Annotation, Integration, and Cell-Cell Communication.

Cells. 2023-7-30

[5]
A universal tool for predicting differentially active features in single-cell and spatial genomics data.

Sci Rep. 2023-7-22

[6]
The origins of skin diversity: lessons from dermal fibroblasts.

Development. 2022-12-1

[7]
Cluster-independent marker feature identification from single-cell omics data using SEMITONES.

Nucleic Acids Res. 2022-10-14

[8]
Decomposing a deterministic path to mesenchymal niche formation by two intersecting morphogen gradients.

Dev Cell. 2022-4-25

[9]
MarcoPolo: a method to discover differentially expressed genes in single-cell RNA-seq data without depending on prior clustering.

Nucleic Acids Res. 2022-7-8

[10]
Accurate and fast cell marker gene identification with COSG.

Brief Bioinform. 2022-3-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索