Suppr超能文献

口腔功能决定再生水螅组织球体的形状振荡模式。

Mouth Function Determines the Shape Oscillation Pattern in Regenerating Hydra Tissue Spheres.

机构信息

Department of Bioengineering, University of California San Diego, La Jolla, California; Biology Department, Swarthmore College, Swarthmore, Pennsylvania.

Department of Physics, University of California San Diego, La Jolla, California; Biology Department, Swarthmore College, Swarthmore, Pennsylvania.

出版信息

Biophys J. 2019 Sep 17;117(6):1145-1155. doi: 10.1016/j.bpj.2019.07.051. Epub 2019 Aug 6.

Abstract

Hydra is a small freshwater polyp capable of regeneration from small tissue pieces and from aggregates of cells. During regeneration, a hollow bilayered sphere is formed that undergoes osmotically driven shape oscillations of inflation and rupture. These oscillations are necessary for successful regeneration. Eventually, the oscillating sphere breaks rotational symmetry along the future head-foot axis of the animal. Notably, the shape oscillations show an abrupt shift from large-amplitude, long-period oscillations to small-amplitude, short-period oscillations. It has been widely accepted that this shift in oscillation pattern is linked to symmetry breaking and axis formation, and current theoretical models of Hydra symmetry breaking use this assumption as a model constraint. However, a mechanistic explanation for the shift in oscillation pattern is lacking. Using in vivo manipulation and imaging, we quantified the shape oscillation dynamics and dissected the timing and triggers of the pattern shift. Our experiments demonstrate that the shift in the shape oscillation pattern in regenerating Hydra tissue pieces is caused by the formation of a functional mouth and not by shape symmetry breaking as previously assumed. Thus, model assumptions must be revised in light of these new experimental data, which can be used to constrain and validate improved theoretical models of pattern formation in Hydra.

摘要

水螅是一种小型淡水息肉,能够从小的组织碎片和细胞聚集体中再生。在再生过程中,会形成一个中空的双层球体,该球体经历渗透压驱动的膨胀和破裂的形状振荡。这些振荡对于成功的再生是必要的。最终,振荡的球体沿着动物未来的头-足轴打破旋转对称性。值得注意的是,形状振荡显示出从大振幅、长周期振荡到小振幅、短周期振荡的突然转变。人们普遍认为,这种振荡模式的转变与对称性破缺和轴形成有关,目前水螅对称性破缺的理论模型使用这一假设作为模型约束。然而,对于振荡模式转变的机制解释还缺乏。通过在体操作和成像,我们量化了形状振荡动力学,并剖析了模式转变的时间和触发因素。我们的实验表明,再生水螅组织片中形状振荡模式的转变是由功能性嘴的形成引起的,而不是如先前假设的那样由形状对称性破缺引起的。因此,必须根据这些新的实验数据修订模型假设,这些数据可用于约束和验证水螅中模式形成的改进理论模型。

相似文献

1
Mouth Function Determines the Shape Oscillation Pattern in Regenerating Hydra Tissue Spheres.
Biophys J. 2019 Sep 17;117(6):1145-1155. doi: 10.1016/j.bpj.2019.07.051. Epub 2019 Aug 6.
2
Mechanogenetic coupling of Hydra symmetry breaking and driven Turing instability model.
Biophys J. 2009 Feb 18;96(4):1649-60. doi: 10.1016/j.bpj.2008.09.062.
3
An osmoregulatory basis for shape oscillations in regenerating hydra.
Biophys J. 2008 Jul;95(2):978-85. doi: 10.1529/biophysj.107.117655. Epub 2008 Mar 28.
4
Wnt signaling determines body axis polarity in regenerating Hydra tissue fragments.
Dev Biol. 2020 Nov 1;467(1-2):88-94. doi: 10.1016/j.ydbio.2020.08.012. Epub 2020 Aug 30.
5
Hydra molecular network reaches criticality at the symmetry-breaking axis-defining moment.
Phys Rev Lett. 2006 Dec 22;97(25):258102. doi: 10.1103/PhysRevLett.97.258102. Epub 2006 Dec 18.
6
Mechanochemical symmetry breaking in Hydra aggregates.
Biophys J. 2015 May 5;108(9):2396-407. doi: 10.1016/j.bpj.2015.03.033.
7
Studying Mechanical Oscillations During Whole-Body Regeneration in Hydra.
Methods Mol Biol. 2022;2450:619-633. doi: 10.1007/978-1-0716-2172-1_33.
9
Nonlinear elasticity and short-range mechanical coupling govern the rate and symmetry of mouth opening in .
Proc Biol Sci. 2024 Feb 28;291(2017):20232123. doi: 10.1098/rspb.2023.2123. Epub 2024 Feb 21.
10
Foot formation in hydra: commitment of the basal disk cells in the lower peduncle.
Dev Growth Differ. 2002 Dec;44(6):517-26. doi: 10.1046/j.1440-169x.2002.00664.x.

引用本文的文献

1
Mechanical strain focusing at topological defect sites in regenerating Hydra.
Development. 2025 Feb 15;152(4). doi: 10.1242/dev.204514. Epub 2025 Mar 3.
2
Mechanical characterization of regenerating Hydra tissue spheres.
Biophys J. 2024 Jul 2;123(13):1792-1803. doi: 10.1016/j.bpj.2024.05.022. Epub 2024 May 23.
3
A complete biomechanical model of contractile behaviors, from neural drive to muscle to movement.
Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2210439120. doi: 10.1073/pnas.2210439120. Epub 2023 Mar 10.
4
Mechanical oscillations orchestrate axial patterning through Wnt activation in .
Sci Adv. 2021 Dec 10;7(50):eabj6897. doi: 10.1126/sciadv.abj6897.

本文引用的文献

1
Generation and Long-term Maintenance of Nerve-free Hydra.
J Vis Exp. 2017 Jul 7(125):56115. doi: 10.3791/56115.
2
Quantitative analysis of cell types during growth and morphogenesis in Hydra.
Wilhelm Roux Arch Entwickl Mech Org. 1973 Dec;171(4):269-285. doi: 10.1007/BF00577725.
3
4
Dynamics of Mouth Opening in Hydra.
Biophys J. 2016 Mar 8;110(5):1191-201. doi: 10.1016/j.bpj.2016.01.008.
5
Multi-functionality and plasticity characterize epithelial cells in Hydra.
Tissue Barriers. 2015 Jul 15;3(4):e1068908. doi: 10.1080/21688370.2015.1068908. eCollection 2015 Oct-Dec.
7
Mechanochemical symmetry breaking in Hydra aggregates.
Biophys J. 2015 May 5;108(9):2396-407. doi: 10.1016/j.bpj.2015.03.033.
8
Generation of transgenic Hydra by embryo microinjection.
J Vis Exp. 2014 Sep 11(91):51888. doi: 10.3791/51888.
10
Preface: the hydra model system.
Int J Dev Biol. 2012;56(6-8):407-9. doi: 10.1387/ijdb.120094bg.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验