文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

微秒脉冲磁场与 FeO 颗粒联合作用杀伤 A375 黑色素瘤细胞的特性匹配。

Feature Matching of Microsecond-Pulsed Magnetic Fields Combined with FeO Particles for Killing A375 Melanoma Cells.

机构信息

State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China.

Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China.

出版信息

Biomolecules. 2024 Apr 26;14(5):521. doi: 10.3390/biom14050521.


DOI:10.3390/biom14050521
PMID:38785928
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11117552/
Abstract

The combination of magnetic fields and magnetic nanoparticles (MNPs) to kill cancer cells by magneto-mechanical force represents a novel therapy, offering advantages such as non-invasiveness, among others. Pulsed magnetic fields (PMFs) hold promise for application in this therapy due to advantages such as easily adjustable parameters; however, they suffer from the drawback of narrow pulse width. In order to fully exploit the potential of PMFs and MNPs in this therapy, while maximizing therapeutic efficacy within the constraints of the narrow pulse width, a feature-matching theory is proposed, encompassing the matching of three aspects: (1) MNP volume and critical volume of Brownian relaxation, (2) relaxation time and pulse width, and (3) MNP shape and the intermittence of PMF. In the theory, a microsecond-PMF generator was developed, and four kinds of MNPs were selected for in vitro cell experiments. The results demonstrate that the killing rate of the experimental group meeting the requirements of the theory is at least 18% higher than the control group. This validates the accuracy of our theory and provides valuable guidance for the further application of PMFs in this therapy.

摘要

磁场和磁性纳米粒子 (MNPs) 的组合通过磁力学杀死癌细胞代表了一种新的治疗方法,具有非侵入性等优点。脉冲磁场 (PMFs) 由于参数易于调节等优点有望应用于这种治疗,但它们存在脉冲宽度窄的缺点。为了充分利用 PMFs 和 MNPs 在这种治疗中的潜力,同时在窄脉冲宽度的限制内最大限度地提高治疗效果,提出了一种特征匹配理论,包括三个方面的匹配:(1)MNP 体积和布朗松弛的临界体积,(2)弛豫时间和脉冲宽度,以及 (3) MNP 形状和 PMF 的间歇性。在该理论中,开发了一种微秒 PMF 发生器,并选择了四种 MNPs 进行体外细胞实验。结果表明,满足理论要求的实验组的杀伤率至少比对照组高 18%。这验证了我们理论的准确性,并为进一步将 PMFs 应用于这种治疗提供了有价值的指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edc2/11117552/e55f64491e51/biomolecules-14-00521-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edc2/11117552/309e97eb3f13/biomolecules-14-00521-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edc2/11117552/068aa8719b7e/biomolecules-14-00521-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edc2/11117552/8f589a5d1276/biomolecules-14-00521-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edc2/11117552/e78b6add05b4/biomolecules-14-00521-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edc2/11117552/384d4c03aba9/biomolecules-14-00521-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edc2/11117552/55e326bbc219/biomolecules-14-00521-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edc2/11117552/ec565ba442db/biomolecules-14-00521-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edc2/11117552/23417113c934/biomolecules-14-00521-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edc2/11117552/6f9b1728b383/biomolecules-14-00521-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edc2/11117552/8cb0179eb21b/biomolecules-14-00521-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edc2/11117552/c6965a5d21e0/biomolecules-14-00521-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edc2/11117552/1a1b4ab70dda/biomolecules-14-00521-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edc2/11117552/c5036e04dbd6/biomolecules-14-00521-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edc2/11117552/e55f64491e51/biomolecules-14-00521-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edc2/11117552/309e97eb3f13/biomolecules-14-00521-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edc2/11117552/068aa8719b7e/biomolecules-14-00521-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edc2/11117552/8f589a5d1276/biomolecules-14-00521-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edc2/11117552/e78b6add05b4/biomolecules-14-00521-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edc2/11117552/384d4c03aba9/biomolecules-14-00521-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edc2/11117552/55e326bbc219/biomolecules-14-00521-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edc2/11117552/ec565ba442db/biomolecules-14-00521-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edc2/11117552/23417113c934/biomolecules-14-00521-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edc2/11117552/6f9b1728b383/biomolecules-14-00521-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edc2/11117552/8cb0179eb21b/biomolecules-14-00521-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edc2/11117552/c6965a5d21e0/biomolecules-14-00521-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edc2/11117552/1a1b4ab70dda/biomolecules-14-00521-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edc2/11117552/c5036e04dbd6/biomolecules-14-00521-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edc2/11117552/e55f64491e51/biomolecules-14-00521-g014.jpg

相似文献

[1]
Feature Matching of Microsecond-Pulsed Magnetic Fields Combined with FeO Particles for Killing A375 Melanoma Cells.

Biomolecules. 2024-4-26

[2]
Viability inhibition of A375 melanoma cellsby a high-frequency nanosecond-pulsed magnetic field combined with targeted iron oxide nanoparticles via membrane magnetoporation.

Nanotechnology. 2021-7-2

[3]
FeO@Au composite magnetic nanoparticles modified with cetuximab for targeted magneto-photothermal therapy of glioma cells.

Int J Nanomedicine. 2018-4-23

[4]
Effect of low frequency magnetic fields on the growth of MNP-treated HT29 colon cancer cells.

Nanotechnology. 2018-3-2

[5]
Improving the Efficacy of Magnetic Nanoparticle-Mediated Hyperthermia Using Trapezoidal Pulsed Electromagnetic Fields as an In Vitro Anticancer Treatment in Melanoma and Glioblastoma Multiforme Cell Lines.

Int J Mol Sci. 2023-11-3

[6]
The Therapeutic Effects of MUC1-C shRNA@FeO Magnetic Nanoparticles in Alternating Magnetic Fields on Triple-Negative Breast Cancer.

Int J Nanomedicine. 2023

[7]
Synthesis and characterization of monodispersed water dispersible FeO nanoparticles and in vitro studies on human breast carcinoma cell line under hyperthermia condition.

Sci Rep. 2018-10-3

[8]
Tumor targeting by lentiviral vectors combined with magnetic nanoparticles in mice.

Acta Biomater. 2017-9-1

[9]
Pulsed magnetic field improves the transport of iron oxide nanoparticles through cell barriers.

ACS Nano. 2013-2-13

[10]
Magneto acoustic tomography with short pulsed magnetic field for in-vivo imaging of magnetic iron oxide nanoparticles.

Nanomedicine. 2016-4

本文引用的文献

[1]
The efficacy of using metformin and/or quercetin for amelioration of gamma-irradiation induced tongue toxicity in diabetic rats.

BMC Oral Health. 2024-1-18

[2]
Zwitterionic Injectable Hydrogel-Combined Chemo- and Immunotherapy Medicated by Monomolecular Micelles to Effectively Prevent the Recurrence of Tumor Post Operation.

ACS Appl Mater Interfaces. 2024-1-24

[3]
Preliminary evaluation of novel Bodily Attention Task to assess the role of the brain in chemotherapy-induced peripheral neurotoxicity (CIPN).

Behav Brain Res. 2024-3-5

[4]
Unveiling the Role of the Properties of Magnetic Nanoparticles for Highly Efficient Low-Frequency Magneto-Mechanical Actuation of Biomolecules.

J Phys Chem Lett. 2023-10-12

[5]
Magnetization relaxation dynamics in polydisperse ferrofluids.

Phys Rev E. 2023-3

[6]
Magneto-mechanical therapeutic effects and associated cell death pathways of magnetic nanocomposites with distinct geometries.

Acta Biomater. 2023-4-15

[7]
Interaction of magnetic fields with biogenic magnetic nanoparticles on cell membranes: Physiological consequences for organisms in health and disease.

Bioelectrochemistry. 2023-6

[8]
Magnetically Induced Brownian Motion of Iron Oxide Nanocages in Alternating Magnetic Fields and Their Application for Efficient siRNA Delivery.

Nano Lett. 2022-11-23

[9]
Cancer treatment by magneto-mechanical effect of particles, a review.

Nanoscale Adv. 2020-6-19

[10]
Adaptive Control of Nanomotor Swarms for Magnetic-Field-Programmed Cancer Cell Destruction.

ACS Nano. 2021-12-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索