文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于粒子磁机械效应的癌症治疗综述

Cancer treatment by magneto-mechanical effect of particles, a review.

作者信息

Naud Cécile, Thébault Caroline, Carrière Marie, Hou Yanxia, Morel Robert, Berger François, Diény Bernard, Joisten Hélène

机构信息

Univ. Grenoble Alpes, CEA, CNRS, Spintec 38000 Grenoble France

BrainTech Lab, U1205, INSERM, Univ. Grenoble Alpes, CHU-Grenoble France.

出版信息

Nanoscale Adv. 2020 Jun 19;2(9):3632-3655. doi: 10.1039/d0na00187b. eCollection 2020 Sep 16.


DOI:10.1039/d0na00187b
PMID:36132753
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9419242/
Abstract

Cancer treatment by magneto-mechanical effect of particles (TMMEP) is a growing field of research. The principle of this technique is to apply a mechanical force on cancer cells in order to destroy them thanks to magnetic particles vibrations. For this purpose, magnetic particles are injected in the tumor or exposed to cancer cells and a low-frequency alternating magnetic field is applied. This therapeutic approach is quite new and a wide range of treatment parameters are explored to date, as described in the literature. This review explains the principle of the technique, summarizes the parameters used by the different groups and reports the main and results.

摘要

基于粒子磁机械效应的癌症治疗(TMMEP)是一个不断发展的研究领域。该技术的原理是通过磁粒子振动对癌细胞施加机械力以将其破坏。为此,将磁粒子注入肿瘤或使其接触癌细胞,然后施加低频交变磁场。正如文献中所描述的,这种治疗方法相当新颖,迄今为止人们正在探索各种治疗参数。这篇综述解释了该技术的原理,总结了不同研究团队所使用的参数,并报告了主要发现和结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b534/9419242/c5d4afd76411/d0na00187b-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b534/9419242/396f856fe5e8/d0na00187b-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b534/9419242/d0487153d97a/d0na00187b-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b534/9419242/9576331e5285/d0na00187b-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b534/9419242/0622b9b9256b/d0na00187b-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b534/9419242/c5d4afd76411/d0na00187b-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b534/9419242/396f856fe5e8/d0na00187b-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b534/9419242/d0487153d97a/d0na00187b-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b534/9419242/9576331e5285/d0na00187b-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b534/9419242/0622b9b9256b/d0na00187b-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b534/9419242/c5d4afd76411/d0na00187b-f5.jpg

相似文献

[1]
Cancer treatment by magneto-mechanical effect of particles, a review.

Nanoscale Adv. 2020-6-19

[2]
Magnetic particles for triggering insulin release in INS-1E cells subjected to a rotating magnetic field.

Nanoscale. 2022-9-22

[3]
Towards nanomedicines of the future: Remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields.

J Control Release. 2015-12-10

[4]
Magneto-mechanical actuation of barium-hexaferrite nanoplatelets for the disruption of phospholipid membranes.

J Colloid Interface Sci. 2020-11-1

[5]
Urchin-like magnetic microspheres for cancer therapy through synergistic effect of mechanical force, photothermal and photodynamic effects.

J Nanobiotechnology. 2022-5-12

[6]
The Performance of the Magneto-Impedance Effect for the Detection of Superparamagnetic Particles.

Sensors (Basel). 2020-3-31

[7]
Evaluation of the Therapeutic Effect of Magneto-Nanomicelles Based on Magneto-Thermal and Photo-Thermal Therapy.

J Nanosci Nanotechnol. 2020-12-1

[8]
Effects of local rearrangement of magnetic particles on deformation in magneto-sensitive elastomers.

Soft Matter. 2019-4-24

[9]
Magnetic field effects on biomolecules, cells, and living organisms.

Biosystems. 1995

[10]
Constitutive Model of Isotropic Magneto-Sensitive Rubber with Amplitude, Frequency, Magnetic and Temperature Dependence under a Continuum Mechanics Basis.

Polymers (Basel). 2021-2-2

引用本文的文献

[1]
Remote Control of Gold-Iron Nanowires Using Low-Frequency 1 Hz Magneto-Mechanical Therapy and Cesium 137 0.662 MeV Radiotherapy for Treatment of Glioblastoma Multiforme.

ACS Appl Mater Interfaces. 2025-6-11

[2]
Profiling the effect of low frequency mechanical vibration on the metabolic and oxidative stress responses of A431 carcinoma.

FEBS Open Bio. 2025-8

[3]
Macrophages co-loaded with drug-associated and superparamagnetic nanoparticles for triggered drug release by alternating magnetic fields.

Drug Deliv Transl Res. 2025-1-13

[4]
Substrate softness increases magnetic microdiscs-induced cytotoxicity.

Nanoscale Adv. 2024-11-12

[5]
Application of magnetic nanoparticles in adoptive cell therapy of cancer; training, guiding and imaging cells.

Nanomedicine (Lond). 2024

[6]
Iron Oxide Nanoparticles: Parameters for Optimized Photoconversion Efficiency in Synergistic Cancer Treatment.

J Funct Biomater. 2024-7-25

[7]
Synergistic Effect of Chemotherapy and Magnetomechanical Actuation of Fe-Cr-Nb-B Magnetic Particles on Cancer Cells.

ACS Omega. 2024-7-1

[8]
Feature Matching of Microsecond-Pulsed Magnetic Fields Combined with FeO Particles for Killing A375 Melanoma Cells.

Biomolecules. 2024-4-26

[9]
Titanium Culture Vessel Presenting Temperature Gradation for the Thermotolerance Estimation of Cells.

Cyborg Bionic Syst. 2023-8-7

[10]
Recent Advances in the Development of Drug Delivery Applications of Magnetic Nanomaterials.

Pharmaceutics. 2023-7-3

本文引用的文献

[1]
Remote Control of Mechanical Forces via Mitochondrial-Targeted Magnetic Nanospinners for Efficient Cancer Treatment.

Small. 2020-1

[2]
Remote Actuation of Apoptosis in Liver Cancer Cells via Magneto-Mechanical Modulation of Iron Oxide Nanoparticles.

Cancers (Basel). 2019-11-26

[3]
Optical response of magnetically actuated biocompatible membranes.

Nanoscale. 2019-6-6

[4]
Fe-Cr-Nb-B ferromagnetic particles with shape anisotropy for cancer cell destruction by magneto-mechanical actuation.

Sci Rep. 2018-8-1

[5]
Image and motor behavior for monitoring tumor growth in C6 glioma model.

PLoS One. 2018-7-26

[6]
Manipulating nanoparticle transport within blood flow through external forces: an exemplar of mechanics in nanomedicine.

Proc Math Phys Eng Sci. 2018-3

[7]
Mechanotransduction in tumor progression: The dark side of the force.

J Cell Biol. 2018-2-21

[8]
Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

Cell Death Differ. 2018-1-23

[9]
Magnetic carbon nanotubes: preparation, physical properties, and applications in biomedicine.

Artif Cells Nanomed Biotechnol. 2017-10-18

[10]
Receptor-mediated cell mechanosensing.

Mol Biol Cell. 2017-11-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索