文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

采用梯形脉冲电磁场提高磁纳米粒子介导的热疗疗效:用于黑色素瘤和多形性胶质母细胞瘤细胞系的体外抗癌治疗。

Improving the Efficacy of Magnetic Nanoparticle-Mediated Hyperthermia Using Trapezoidal Pulsed Electromagnetic Fields as an In Vitro Anticancer Treatment in Melanoma and Glioblastoma Multiforme Cell Lines.

机构信息

Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain.

Escula Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, 28006 Madrid, Spain.

出版信息

Int J Mol Sci. 2023 Nov 3;24(21):15933. doi: 10.3390/ijms242115933.


DOI:10.3390/ijms242115933
PMID:37958913
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10648011/
Abstract

Magnetic hyperthermia (MHT) is an oncological therapy that uses magnetic nanoparticles (MNPs) to generate localized heat under a low-frequency alternating magnetic field (AMF). Recently, trapezoidal pulsed alternating magnetic fields (TPAMFs) have proven their efficacy in enhancing the efficiency of heating in MHT as compared to the sinusoidal one. Our study aims to compare the TPAMF waveform's killing effect against the sinusoidal waveform in B16F10 and CT2A cell lines to determine more efficient waveforms in causing cell death. For that purpose, we used MNPs and different AMF waveforms: trapezoidal (TP), almost-square (TS), triangular (TR), and sinusoidal signal (SN). MNPs at 1 and 4 mg/mL did not affect cell viability during treatment. The exposition of B16F10 and CT2A cells to only AMF showed nonsignificant mortality. Hence, the synergetic effect of the AMF and MNPs causes the observed cell death. Among the explored cases, the nonharmonic signals demonstrated better efficacy than the SN one as an MHT treatment. This study has revealed that the application of TP, TS, or TR waveforms is more efficient and has considerable capability to increase cancer cell death compared to the traditional sinusoidal treatment. Overall, we can conclude that the application of nonharmonic signals enhances MHT treatment efficiency against tumor cells.

摘要

磁热疗(MHT)是一种利用磁性纳米粒子(MNPs)在低频交变磁场(AMF)下产生局部热的肿瘤治疗方法。最近,梯形脉冲交变磁场(TPAMFs)已被证明在提高 MHT 加热效率方面优于正弦波。我们的研究旨在比较 TPAMF 波形与正弦波在 B16F10 和 CT2A 细胞系中的杀伤效果,以确定更有效的波形来引起细胞死亡。为此,我们使用了 MNPs 和不同的 AMF 波形:梯形(TP)、近乎方形(TS)、三角形(TR)和正弦信号(SN)。在治疗过程中,1 和 4 mg/mL 的 MNPs 不影响细胞活力。仅 AMF 暴露于 B16F10 和 CT2A 细胞不会导致明显的死亡率。因此,AMF 和 MNPs 的协同作用导致了观察到的细胞死亡。在研究的案例中,非谐波信号比 SN 信号作为 MHT 治疗更有效。这项研究表明,与传统的正弦波治疗相比,TP、TS 或 TR 波形的应用更有效,并且具有显著提高癌细胞死亡的能力。总的来说,我们可以得出结论,非谐波信号的应用增强了 MHT 治疗肿瘤细胞的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab0a/10648011/65713e4231ce/ijms-24-15933-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab0a/10648011/8ce538db3c82/ijms-24-15933-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab0a/10648011/f7bc75303298/ijms-24-15933-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab0a/10648011/ec6b1aa20022/ijms-24-15933-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab0a/10648011/7393cb88e95e/ijms-24-15933-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab0a/10648011/8d1a28b07c8f/ijms-24-15933-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab0a/10648011/59d662dfeaaa/ijms-24-15933-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab0a/10648011/e4573ba4deb1/ijms-24-15933-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab0a/10648011/4d7c9d01880a/ijms-24-15933-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab0a/10648011/1139a9938bca/ijms-24-15933-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab0a/10648011/65713e4231ce/ijms-24-15933-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab0a/10648011/8ce538db3c82/ijms-24-15933-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab0a/10648011/f7bc75303298/ijms-24-15933-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab0a/10648011/ec6b1aa20022/ijms-24-15933-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab0a/10648011/7393cb88e95e/ijms-24-15933-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab0a/10648011/8d1a28b07c8f/ijms-24-15933-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab0a/10648011/59d662dfeaaa/ijms-24-15933-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab0a/10648011/e4573ba4deb1/ijms-24-15933-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab0a/10648011/4d7c9d01880a/ijms-24-15933-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab0a/10648011/1139a9938bca/ijms-24-15933-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab0a/10648011/65713e4231ce/ijms-24-15933-g010.jpg

相似文献

[1]
Improving the Efficacy of Magnetic Nanoparticle-Mediated Hyperthermia Using Trapezoidal Pulsed Electromagnetic Fields as an In Vitro Anticancer Treatment in Melanoma and Glioblastoma Multiforme Cell Lines.

Int J Mol Sci. 2023-11-3

[2]
Enhancing Magnetic Hyperthermia Nanoparticle Heating Efficiency with Non-Sinusoidal Alternating Magnetic Field Waveforms.

Nanomaterials (Basel). 2021-11-29

[3]
Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer.

Chem Soc Rev. 2021-10-18

[4]
Magnetic Hyperthermia in Glioblastoma Multiforme Treatment.

Int J Mol Sci. 2024-9-19

[5]
Hyperthermia generated by magnetic nanoparticles for effective treatment of disseminated peritoneal cancer in an orthotopic nude-mouse model.

Cell Cycle. 2021-6

[6]
In Vitro Study of Tumor-Homing Peptide-Modified Magnetic Nanoparticles for Magnetic Hyperthermia.

Molecules. 2024-6-3

[7]
Optimization of the Preparation of Magnetic Liposomes for the Combined Use of Magnetic Hyperthermia and Photothermia in Dual Magneto-Photothermal Cancer Therapy.

Int J Mol Sci. 2020-7-22

[8]
Magnetic nanoparticle-based hyperthermia: A prospect in cancer stem cell tracking and therapy.

Life Sci. 2023-6-15

[9]
Effective magnetic hyperthermia induced by mitochondria-targeted nanoparticles modified with triphenylphosphonium-containing phospholipid polymers.

Cancer Sci. 2023-9

[10]
Computational evaluation of amplitude modulation for enhanced magnetic nanoparticle hyperthermia.

Biomed Tech (Berl). 2015-10

引用本文的文献

[1]
Advances and Challenges in Nano-Delivery Systems for Glioblastoma Treatment: A Comprehensive Review.

Int J Nanomedicine. 2025-8-4

[2]
Nanoparticles for Glioblastoma Treatment.

Pharmaceutics. 2025-5-23

[3]
Advanced microfluidic systems with temperature modulation for biological applications.

Biomicrofluidics. 2025-5-1

[4]
Pulsed Alternating Fields Magnetic Hyperthermia in Combination with Chemotherapy (5-Fluorouracil) as a Cancer Treatment for Glioblastoma Multiform: An In Vitro Study.

Nanomaterials (Basel). 2025-4-5

[5]
Advanced Nanomaterials for Cancer Therapy: Gold, Silver, and Iron Oxide Nanoparticles in Oncological Applications.

Adv Healthc Mater. 2025-2

[6]
Silver Nanoparticles Encapped by Dihydromyricetin: Optimization of Green Synthesis, Characterization, Toxicity, and Anti-MRSA Infection Activities for Zebrafish ().

Int J Mol Sci. 2024-5-11

[7]
Magnetic nanoparticles in square-wave fields for breakthrough performance in hyperthermia and magnetic particle imaging.

Sci Rep. 2024-5-10

[8]
Application of Nanoparticles for Magnetic Hyperthermia for Cancer Treatment-The Current State of Knowledge.

Cancers (Basel). 2024-3-14

本文引用的文献

[1]
Paclitaxel-Loaded Lipid-Coated Magnetic Nanoparticles for Dual Chemo-Magnetic Hyperthermia Therapy of Melanoma.

Pharmaceutics. 2023-3-2

[2]
Local Temperature Increments and Induced Cell Death in Intracellular Magnetic Hyperthermia.

ACS Nano. 2023-4-11

[3]
Fine tuning and optimization of magnetic hyperthermia treatments using versatile trapezoidal driving-field waveforms.

Nanoscale Adv. 2020-9-1

[4]
Magneto-mechanical destruction of cancer-associated fibroblasts using ultra-small iron oxide nanoparticles and low frequency rotating magnetic fields.

Nanoscale Adv. 2021-11-18

[5]
Proposal of New Safety Limits for In Vivo Experiments of Magnetic Hyperthermia Antitumor Therapy.

Cancers (Basel). 2022-6-23

[6]
Nanoparticle-Mediated Photothermal Therapy Limitation in Clinical Applications Regarding Pain Management.

Nanomaterials (Basel). 2022-3-10

[7]
Magnetic Fields and Cancer: Epidemiology, Cellular Biology, and Theranostics.

Int J Mol Sci. 2022-1-25

[8]
The surface coating of iron oxide nanoparticles drives their intracellular trafficking and degradation in endolysosomes differently depending on the cell type.

Biomaterials. 2022-2

[9]
Enhancing Magnetic Hyperthermia Nanoparticle Heating Efficiency with Non-Sinusoidal Alternating Magnetic Field Waveforms.

Nanomaterials (Basel). 2021-11-29

[10]
Enhancement of CD8 T-Cell-Mediated Tumor Immunotherapy via Magnetic Hyperthermia.

ChemMedChem. 2022-1-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索